Every Infinite-Dimensional Hilbert Space is Real-Analytically Isomorphic with Its Unit Sphere

Tadeusz Dobrowolski*

Department of Mathematics, The University of Oklahoma, 601 Elm Avenue, Room 423, Norman, Oklahoma 73109-0315

Communicated by A. Connes

Received January 24, 1994

DEDICATED TO CZESŁAW BESSAGA ON HIS SIXTIETH BIRTHDAY FOR TEACHING ME TO LOVE MATHEMATICS

1. Introduction

Let $E=(E,\|\cdot\|)$ be a Banach space and let ω be a continuous norm on E (i.e., $\omega(x)\leqslant C\|x\|$ for some constant C>0 and all $x\in E$). Assume that ω is real-analytic (resp., of class C^p , $p=1,2,...,\infty$), that is, ω is real-analytic (resp., of class C^p) on $E\setminus\{0\}$. Let $S_\omega=\{x\in E\mid \omega(x)=1\}$ be the ω -unit sphere. Then S_ω carries the natural real-analytic (resp., C^p) manifold structure determined as follows. For every $z\in S_\omega$, let P_z be the hyperplane tangent to S_ω at -z. Write π_z for the stereographic projection of $S_\omega\setminus\{z\}$ onto P_z . The desired manifold structure on S_ω is defined by the family $\{\pi_z\mid z\in S_\omega\}$. It can be checked that S_ω is a real-analytic (resp., C^p) submanifold, modelled on a codimension one, closed linear subspace E_0 of E; cf. [Lang, II, §2, Example]. (The space E_0 can be identified with ker x^* , where $0\neq x^*\in E^*$.) If E is infinite-dimensional, then the homotopy types of S_ω and of E_0 coincide and, applying results of infinite-dimensional topology, S_ω is homeomorphic to E_0 . The question arises whether S_ω and E_0 are real-analytically (resp., C^p) isomorphic.

This paper answers that question affirmatively in the case of separable E. Since, obviously, a Hilbertian norm is real-analytic then, in particular, we get

* Current address: Department of Mathematics, Pittsburg State University, Pittsburg, Kansas 66762. E-mail address: tdobrowo@mail.pittstate.edu.

THEOREM. Let H be an infinite-dimensional Hilbert space and let S be the unit sphere of H. There exists a real-analytic isomorphism f from S onto H.

This provides an affirmative answer to Bessaga's Problem 6 in [Bes], and extends his theorem therein stating that S and H are C^{∞} isomorphic. Let us recall that Bessaga's theorem was an important ingredient in the theory of infinite-dimensional C^{∞} Hilbert manifolds. The main results of this theory state that: (1) the homotopy and the C^{∞} isomorphism classifications of such manifolds coincide (see [BK]), and (2) every such manifold admits a C^{∞} open embedding into H [EE]. It would be interesting to extend the results (1) and (2) to the real-analytic category. Our result can be viewed as a small move towards this (obviously, the basic difference between the C^{∞} and the real-analytic categories is the lack of real-analytic partitions of unity in the real-analytic setting).

Amazingly enough not only do we show that there exists a real-analytic isomorphism $f: S \to H$ but, in fact, we give an explicit formula for f. The key ingredient of our approach is Bessaga's incomplete norm technique which we adapt here to delete one-point sets from the sphere S in a real-analytic way. Without going into details, let us say that we replace the natural affine action of H on H by the (natural) action of the group of isometries of H on S (cf. [Dob2]).

As a by-product of our approach we construct a C^{\times} -isomorphism of $H\setminus\{z\}$ onto H, $\|z\|=1$, which preserves all concentric spheres (and, in fact, can be identity off an arbitrary neighborhood of S). Moreover, $\{z\}$ can be replaced by an arbitrary compact set $K\subset S$. This shows that the unit closed ball B, a C^{\times} -manifold having S as its boundary, is C^{\times} isomorphic to $B\setminus K$ whose boundary is just $S\setminus K$.

Some results concerning arbitary Banach (including nonseparable) spaces are also discussed along these lines.

2. The Proof of Theorem

We start with the following elementary observation.

LEMMA 1. Let E be a Banach space, and let ω_1 and ω_2 be real-analytic (resp., of class C^p , $p = 1, 2, ..., \infty$) norms on E. The formula

$$h_1(x) = \frac{x}{\omega_2(x)}, \qquad x \in E$$

establishes a real-analytic (resp., C^p) isomorphism of S_{ω_1} onto S_{ω_2} .

Proof. Since S_{ω_1} and S_{ω_2} are submanifolds of E, it is enough to notice that h_1 and $h_1^{-1}(y) = y/\omega_1(y)$, $y \in S_{\omega_2}$, are real-analytic (resp., of class C^p) on some neighborhoods of S_{ω_1} and S_{ω_2} , respectively.

Let $T: E \to H$ be a continuous injective operator of a Banach space $E = (E, \|\cdot\|)$ into a Hilbert space $(H, \langle \cdot, \cdot \rangle)$. For every $x, y \in E$, we write

$$\langle x, y \rangle_{\omega} = \langle Tx, Ty \rangle.$$

Then $(E, \langle \cdot, \cdot \rangle_{\omega})$ is a pre-Hilbert space whose completion will be denoted by \hat{E}_{ω} ; clearly, both the inner product $(x, y) \to \langle x, y \rangle_{\omega}$ and the norm $x \to \omega(x) = \sqrt{\langle x, x \rangle_{\omega}}$ are real-analytic functions on \hat{E}_{ω} . We let

$$\hat{S}_{\omega} = \{ x \in \hat{E}_{\omega} \mid \omega(x) = 1 \},$$

and

$$S_{\omega} = \{ x \in E \mid x \in \hat{S}_{\omega} \}.$$

We will consider E as a dense subspace of \hat{E}_{ω} ; it follows that S_{ω} is dense in \hat{S}_{ω} .

PROPOSITION 1. Suppose that there exists a path $p: [0, t_0) \to \hat{S}_{\omega}, t_0 > 0$, satisfying the following conditions:

- (a) $p(t) \in S_{\omega}$ for $0 < t < t_0$, and $p(0) \in \hat{S}_{\omega} \setminus S_{\omega}$;
- (b) $p \mid (0, t_0): (0, t_0) \rightarrow S_{\omega}$ is real-analytic as a map into $(E, \|\cdot\|)$;
- (c) there exists a constant M > 0 such that $\omega(p(t) p(s)) \leq M |t s|$, $0 \leq t$, $s \leq t_0$.

Fix an arbitrary $z \in S_{\omega}$ so that $\langle z, p(0) \rangle_{\omega} \neq 0$. Let $0 < L < \min\{t_0/2, 1/8M\}$, and write $d(x) = L\omega(x-z)$. Then the formula

$$h(x) = x - 2 \langle x, p(d(x)) \rangle_{\omega} \cdot p(d(x)), \quad x \in S_{\omega} \setminus \{z\}$$

establishes a real-analytic isomorphism of $S_{\omega} \setminus \{z\}$ onto S_{ω} .

LEMMA 2. For every $x \in \hat{S}_{\omega}$, let A = A(x) be given by

$$A(v) = v - 2 \langle v, x \rangle_{m} \cdot x$$
.

Then, we have

- (a) $A: \hat{E}_{\omega} \xrightarrow{\text{onto}} \hat{E}_{\omega}$ is an isometry such that A^2 is the identity operator;
- (b) if $x_0 \in S_{\omega}$, then $A \mid E$ is a continuous invertible operator of E onto E; in particular, $A(S_{\omega}) = S_{\omega}$ and $A(\hat{S}_{\omega} \setminus S_{\omega}) \subset \hat{S}_{\omega} \setminus S_{\omega}$;
 - (c) $\omega(A(x)(y) A(x')(y)) \le 2\omega(x x')$ for every $x, x', y \in \hat{S}_{\omega}$.

Proof. Since $\omega^2(x) = 1$, we have

$$\omega^{2}(A(y)) = \langle y - 2 \langle y, x \rangle_{\omega} \cdot x, y - 2 \langle y, x \rangle_{\omega} \cdot x \rangle_{\omega}$$

$$= \langle y, y \rangle_{\omega} - 2 \langle y, x \rangle_{\omega}^{2} - 2 \langle y, x \rangle_{\omega}^{2} + 4 \langle y, x \rangle_{\omega}^{2} \langle x, x \rangle_{\omega}$$

$$= \langle y, y \rangle_{\omega} = \omega^{2}(y).$$

If $z = A(y) = y - 2 \langle y, x \rangle_{\omega} \cdot x$, $z \in \hat{S}_{\omega}$, then $\langle z, x \rangle_{\omega} = \langle y, x \rangle_{\omega} - 2 \langle y, x \rangle_{\omega}$ = $-\langle y, x \rangle_{\omega}$; consequently, $z = y + 2 \langle z, x \rangle_{\omega} \cdot x$. Hence, we have that $y = z - 2 \langle z, x \rangle_{\omega} \cdot x$ and so $A^{-1}(z) = A(z)$. The item (a) is shown.

The item (b) is obvious. To show (c), let $x, x', y \in \hat{S}_{\omega}$ and estimate

$$\begin{split} \omega(A(x)(y) - A(x')(y)) &= \omega(\langle y, x \rangle_{\omega} \cdot x - \langle y, x' \rangle_{\omega} \cdot x') \\ &\leq \omega(\langle y, x \rangle_{\omega} \cdot x - \langle y, x' \rangle_{\omega} \cdot x) + \omega(\langle y, x' \rangle_{\omega} \cdot x \\ &- \langle y, x' \rangle_{\omega} \cdot x') \\ &\leq |\langle y, x - x' \rangle_{\omega} | \omega(x) + |\langle y, x' \rangle_{\omega} | \omega(x - x') \\ &\leq \omega(y) \omega(x - x') + \omega(y) \omega(x') \omega(x - x') \\ &= 2\omega(x - x'). \quad \blacksquare \end{split}$$

Proof of Proposition 1. Observe that there exists $\varepsilon > 0$ so that h(x) makes sense for every x in $U_{\varepsilon} = \{x \in \hat{E}_{\omega} \mid |\omega(x) - 1| < \varepsilon\}$. Since h(x) = A(p(d(x)))(x), by Lemma 2(a), $h: U_{\varepsilon} \to U_{\varepsilon}$, moreover, $\omega(h(x)) = \omega(x)$.

We will show that $h: \hat{S}_{\omega} \to \hat{S}_{\omega}$ is a bijection (in general, h is bijection on U_{ε} for some $\varepsilon > 0$). To this end, fix $y \in \hat{S}_{\omega}$ and designate $\Phi: \hat{S}_{\omega} \to \hat{S}_{\omega}$ by

$$\Phi(x) = A(\varphi(x))(y), \qquad x \in \hat{S}_{\alpha},$$

where $\varphi(x) = p(d(x))$. By our assumptions, we can estimate as follows

$$\begin{aligned} \omega(\varphi(x) - \varphi(x')) &\leq M |d(x) - d(x')| \leq ML\omega(x - x') \\ &\leq \frac{1}{8}\omega(x - x'). \end{aligned}$$

This together with Lemma 2(c) yields

$$\omega(\Phi(x) - \Phi(x')) = \omega(A(\varphi(x))(y) - A(\varphi(x'))(y))$$

$$\leq 2\omega(\varphi(x) - \varphi(x')) \leq 2 \cdot \frac{1}{8}\omega(x - x') = \frac{1}{4}\omega(x - x')$$

for every $x, x' \in \hat{S}_{\omega}$. Applying the Banach Contraction Principle to the complete metric space \hat{S}_{ω} and to the map $\Phi: \hat{S}_{\omega} \to \hat{S}_{\omega}$, we infer that there

exists a unique $x \in \hat{S}_{\omega}$ such that $x = \Phi(x) = A(\varphi(x))(y)$. Using Lemma 2(a), we equivalently have that

$$h(x) = A(\varphi(x))(y) = A^{2}(\varphi(x))(y) = y.$$

The same argument shows that h: $U_{\varepsilon} \to U_{\varepsilon}$ is a bijection for some $\varepsilon > 0$.

We claim that $h(S_{\omega}\setminus\{z\})=S_{\omega}$. Suppose $x\in S_{\omega}\setminus\{z\}$. It follows that d(x)>0. By the assumption (a), $\varphi(x)=p(d(x))\in S_{\omega}$; applying Lemma 2(b), $h(x)=A(\varphi(x))(x)\in S_{\omega}$. Now suppose that h(x)=y for some $y\in S_{\omega}$. Then x cannot be in $\hat{S}_{\omega}\setminus S_{\omega}$; otherwise we would have d(x)>0, and since $\varphi(x)=p(d(x))\in S_{\omega}$, by Lemma 2(b), $h(x)\in \hat{S}_{\omega}\setminus S_{\omega}$, a contradiction. Moreover, x cannot be z; otherwise $\varphi(z)=p(0)$ and hence $y=h(z)=A(p(0))(z)=z-2\langle z,p(0)\rangle_{\omega}\cdot p(0)\in \hat{S}_{\omega}\setminus S_{\omega}$ because $\langle z,p(0)\rangle_{\omega}\neq 0$ and $p(0)\in \hat{S}_{\omega}\setminus S_{\omega}$.

We have $h(x) = x - 2 \langle x, p(d(x)) \rangle_{\infty} \cdot p(d(x))$, $x \in S_{\infty} \setminus \{z\}$. Since d is real-analytic on $S_{\infty} \setminus \{z\}$ and $p \mid (0, t_0)$, as a map into E, is real-analytic as well, h is also real-analytic. To show the real-analyticity of h^{-1} , consider

$$H(x, y) = x - A(\varphi(x))(y)$$

defined on $U_{\varepsilon} \times U_{\varepsilon}$ into \hat{E}_{ω} . Below we will show that for every pair $(x, y) \in S_{\omega} \times S_{\omega}$, $x \neq z$, the operator

$$T = \frac{\partial H(x, y)}{\partial x} : E \to E$$

is invertible. Then, by an application of the implicit function theorem (cf. [Die, 10.2.5] and [Wh]) we conclude that h^{-1} , which satisfies $H(h^{-1}(y), y) = 0$, is real-analytic when restricted to S_m .

Since $H(x, y) = x + 2 \langle y, \varphi(x) \rangle_{\omega} \cdot \varphi(x) - y$, it follows that $T(v) = v + 2D[\langle x, \varphi(x) \rangle_{\omega} \cdot \varphi(x)](v)$, where D stands for the derivative operator. We see that

$$D[\langle y, \varphi(x) \rangle_{\omega}](v) \cdot \varphi(x) + \langle y, \varphi(x) \rangle_{\omega} \cdot D[\varphi(x)](v)$$

$$= \langle y, D[\varphi(x)](v) \rangle_{\omega} \cdot \varphi(x) + \langle y, \varphi(x) \rangle_{\omega} \cdot D[\varphi(x)](v).$$

From (c) we get $D[\varphi(x)](v) = v_0 D[d(x)](v)$, where $v_0 \in E$ with $\omega(v_0) \leqslant M$. Moreover, we have $\sup\{|D[d(x)](v)| \mid \omega(v) \leqslant 1\} \leqslant L$. It follows that $\sup\{\omega(D[\varphi(x)](v)) \mid \omega(v) \leqslant 1\} \leqslant LM \leqslant \frac{1}{8}$, and consequently $\sup\{2\omega(D[\langle y, \varphi(x)\rangle_{\omega} \cdot \varphi(x)](v)) \mid \omega(v) \leqslant 1\} \leqslant 2(\frac{1}{8} + \frac{1}{8}) = \frac{1}{2}$. We can now easily conclude that T is invertible. The proof is complete.

Remark 1. The above argument shows that

- (a) there exists $\varepsilon > 0$ so that h establishes a real-analytic isomorphism of $\{x \in E \mid |\omega(x) 1| < \varepsilon\} \setminus \{z\}$ onto $\{x \in E \mid |\omega(x) 1| < \varepsilon\}$ that preserves the concentric spheres;
- (b) with such ε , $h: U_{\varepsilon} \setminus \{z\} \xrightarrow{\text{onto}} U_{\varepsilon} \setminus \{h(z)\}$ is a real-analytic isomorphism;
- (c) $h: \hat{S}_{\omega} \to \hat{S}_{\omega}$ is a homeomorphism, and both h and h^{-1} are Lipschitz.

To justify (c), let $x = h^{-1}(y)$ and $x' = h^{-1}(y')$. We have

$$\begin{split} \omega(x-x') &= \omega(A(\varphi(x))(|y|) - A(\varphi(x))(|y|)) \\ &\leq \omega(A(\varphi(x))(|y|) - A(\varphi(x))(|y'|) + \omega(A(\varphi(x))(|y'|) - A(\varphi(x'))(|y'|)) \\ &\leq \omega(|y-y'|) + \frac{1}{4}\omega(x-x'). \end{split}$$

We see that $\frac{3}{4}\omega(h^{-1}(v) - h^{-1}(v')) \le \omega(v - v')$.

Remark 2. Suitable C^p versions of Proposition 1 and Remark 2 hold true.

Below we will give an explicit formula for p(t) in the case of $E = l^2$. Here we will consider $l^2 = \{x = (x_n)_{n=0}^{\infty} \mid \sum_{n=0}^{\infty} x_n^2 < \infty\}$ with the norm $||x|| = \sqrt{\sum_{n=0}^{\infty} x_n^2}$. Let $T: l^2 \to l^2$ be given by

$$T(x) = \left(\frac{x_n}{2^n}\right), \qquad x = (x_n)_{n=0}^{\infty} \in l^2.$$

The space \hat{l}_{ω}^2 can be identified with $\{x = (x_n)_{n=0}^{\infty} \mid \sum_{n=0}^{\infty} (x_n/2^n)^2 < \infty\}$ equipped with the inner product $\langle x, y \rangle_{\omega} = \sum_{n=0}^{\infty} x_n y_n/2^{2n}$.

LEMMA 3. There exists a path $p: [0, 1) \rightarrow \hat{S}_{\omega}$ fulfilling the items (a)–(c) of Proposition 1.

Proof. For $0 \le t \le 1$, we let $q(t) = (1, t, t^2, ...) \in \hat{l}_{\omega}^2$. We have that

$$\omega^{2}(q(t)) = \sum_{n=0}^{\infty} \left(\frac{t^{n}}{2^{n}}\right)^{2} = \sum_{n=0}^{\infty} \left[\left(\frac{t}{2}\right)^{2} \right]^{n} = \frac{1}{1 - t^{2}/4} = \frac{4}{4 - t^{2}}$$

for $0 \le t \le 1$. We let $p_0(t) = (\sqrt{(4-t^2)}/2) q(t)$, $0 \le t \le 1$, and set

$$p(t) = p_0(1-t), \quad 0 \le t \le 1.$$

Clearly, $p: [0, 1] \to \hat{S}_{\omega}$ and $p(0) = p_0(1) = (\sqrt{3}/2) \ q(1) \in \hat{S}_{\omega} \setminus S_{\omega}$. Moreover, $p \mid (0, 1) : (0, 1) \to S_{\omega} \subset l^2$ is real-analytic. It remains to establish the item (c) of Proposition 1. To this end, it is enough to show that the derivative of p_0 , as a map into \hat{l}_{ω}^2 , has bounded norm.

We have

$$\begin{split} D[\,p_0(t)\,] &= \left(\sqrt{1-\frac{t^2}{4}}\right)'\,q(t) + \sqrt{1-\frac{t^2}{4}}\,D[\,q(t)\,] \\ &= \frac{t}{2\,\sqrt{4-t^2}}\,q(t) + \sqrt{1-\frac{t^2}{4}}\,D[\,q(t)\,]; \end{split}$$

consequently,

$$\begin{aligned} \omega(D[p_0(t)]) &\leq \frac{t}{2\sqrt{4-t^2}} \omega(q(t)) + \sqrt{1 - \frac{t^2}{4}} \omega(D[q(t)]) \\ &\leq \frac{t}{2\sqrt{4-t^2}} \cdot \frac{2}{\sqrt{4-t^2}} + \sqrt{1 - \frac{t^2}{4}} \omega(D[q(t)]) \\ &= \frac{t}{4-t^2} + \sqrt{1 - \frac{t^2}{4}} \omega(D[q(t)]). \end{aligned}$$

For $0 \le t \le 1$, we have $\omega^2(D[q(t)]) = \sum_{n=1}^{\infty} (nt^{n-1}/2^n)^2 \le \sum_{n=1}^{\infty} nt^{n-1}/2^n = 2/(2-t)^2$. This together with the above yields

$$\omega(D[p_0(t)]) \le \frac{t}{4-t^2} + \frac{\sqrt{4-t^2}}{2} \frac{\sqrt{2}}{2-t} \le \frac{1}{3} + \frac{\sqrt{2}\sqrt{6}}{2}$$

for every $0 \le t \le 1$. Summarizing, we have $\omega(D[p_0(t)]) \le 3$.

We have arrived at the last step of our proof.

LEMMA 4. Let E be a Banach space and ω be a real-analytic (resp., C^p , $p=1,2,...,\infty$) norm on E. Let $z \in S_{\omega} = \{x \in E \mid \omega(x)=1\}$, and let P_z be the hyperplane tangent to S at -z. Then the stereographic projection $\pi_z \colon S_{\omega} \setminus \{z\} \xrightarrow{\text{onto}} P_z$ establishes a real-analytic (resp., C^p) isomorphism.

Proof. Let $x^* \in E^*$ be the derivative of ω at z. Then $P_z = \{x \in E \mid x^*(x+z) = 0\}$. We have

$$\pi_z(x) = z + \frac{2x^*(z)}{x^*(z-x)}(x-z), \qquad x \in S_{\omega} \setminus \{z\}.$$

To obtain π_z^{-1} , let $y \in P_z$ and find the unique t such that $\omega(z+t(y-z))=1$. We have that $\pi_z^{-1}(y)=z+t(y-z)$. Since for $F(y,t)=\omega(z+t(y-z))-1$ we have

$$\frac{\partial F(y,t)}{\partial t} = D[\omega(z+t(y-x))](y-z) \neq 0.$$

The implicit function theorem implies that $y \mapsto t = t(y)$ is real-analytic (resp., of class C^p). The lemma easily follows.

Proof of Theorem. We can identify H with the product $l^2 \times H'$, where H' is a Hilbert space. Let $T: l^2 \times H' \to l^2 \times H'$ be given by $T(x,v) = ((x_n/2^n), v), (x,v) = ((x_n)_{n=0}^\infty, v) \in l^2 \times H'$. Consider the incomplete norm ω on $l^2 \times H'$ induced by the operator T. Apply Lemma 1 to the original norm $\omega_1 = \|\cdot\|$ and the incomplete, real-analytic one, $\omega_2 = \omega$ to obtain a real-analytic isomorphism $h_1: S \xrightarrow{\text{onto}} S_{\omega}$. Then apply Lemma 3 to find a path $p: [0,1) \to \hat{S}_{\omega} \cap (l^2 \times \{0\}, \omega)$ satisfying the requirements (a)–(c) of Proposition 1. Then apply Proposition 1 to obtain a real-analytic isomorphism $h: S_{\omega} \setminus \{z\} \to S_{\omega}$ for some $z \in S_{\omega}$. Apply Lemma 4 to $l^2 \times H'$, ω and to the above z to get a real-analytic isomorphism of $S_{\omega} \setminus \{z\}$ onto P_z . Let $i: P_z \to H$ be the composition of the affine map $x \to x + z$ of P_z onto a closed 1-codimensional subspace H_0 of H, and an isomorphism of H_0 onto H. Finally, set $f = i - \pi_z - h^{-1} - h_1: S \to H$.

Remark 3. In case of $H = l^2$ we have the following formulas for h_1 , h, i and π_z , the components of f,

$$h_1(x) = \frac{x}{\sqrt{\sum_{n=0}^{\infty} (x_n/2^n)^2}}, \qquad x = (x_n)_{n=0}^{\infty} \in S;$$

$$h(x) = \left(x_n - 2\sum_{n=0}^{\infty} (x_n d^{2n}(x)/2^{2n})_{n=0}^{\infty}, \qquad x = (x_n)_{n=0}^{\infty} \in S_{\infty} \setminus \{(1, 0, \dots)\},$$

where $d(x) = \frac{1}{24} \sqrt{(x_0 - 1)^2 + \sum_{n=1}^{\infty} (x_n / 2^n)^2}$;

$$\pi_{z}(x) = \left(-1, \frac{2x_{1}}{1 - x_{0}}, \frac{2x_{2}}{1 - x_{0}}, \dots\right), \qquad x = (x_{n})_{n=0}^{\infty} \in S_{\omega} \setminus \{(1, 0, \dots)\};$$

$$i(x) = (x_{1}, x_{2}, \dots), \qquad x = (-1, x_{1}, x_{2}, \dots) \in l^{2}.$$

Here, $S_{\omega} = \{(x_n)_{n=0}^{\infty} \in l^2 \mid \sum_{n=0}^{\infty} (x_n/2^n)^2 = 1\}.$

2. A GENERALIZATION TO BANACH SPACES

Let E be a Banach space that admits a continuous injective operator $T: E \to H$ into a Hilbert space H such that T^{-1} is not continuous. Moreover, let $(F, \|\cdot\|_F)$ be a Banach space whose norm $\|\cdot\|_F$ is real-analytic (resp., of class C^p , $p=1,2,...,\infty$). We will consider the space $Z=E\times F$ and the incomplete norm $\omega(x,y)=\sqrt{\|T(x)\|^2+\|y\|_F^2}$. We see that ω is a real-analytic (resp., of class C^p).

PROPOSITION 2. There exists a real-analytic (resp., C^p) isomorphism $h: S_{\omega} \setminus \{z_0\} \xrightarrow{\operatorname{onto}} S_{\omega}$, where $S_{\omega} = \{z \in Z \mid \omega(z) = 1\}$ and z_0 is some point in S_{ω} .

Proof. We shall show the existence of a path p that satisfies (a)–(c) of Proposition 1. Then, making suitable adjustments, we shall follow the proof of Proposition 1.

Since $E \times \{0\} \subset Z$ is ω -incomplete, we can pick $\hat{z} \in \hat{Z}_{\omega} \setminus Z$ which is in $\hat{E}_{\omega} \times \{0\}$, the ω -closure of $E \times \{0\}$ in \hat{Z}_{ω} . We can assume that $\omega(\hat{z}) = 1$. By a result of [Dob 1, Sublemma 3.2] there exists a path $q: [0, 1) \to \hat{Z}_{\omega}$ such that

- (a') $q(0) = \hat{x}$ and $q \mid (0, 1) : (0, 1) \to E$;
- (b') $q \mid (0, 1)$ is real-analytic as a map into E;
- (c') $\omega(q(t) q(s)) \le M |t s|$ for some M > 0 and all t, s.

Since $\hat{x} \in S_{\omega}$, there exists $t_0 > 0$ so that

(d)
$$\frac{1}{2} \leqslant \omega(q(t)) \leqslant 2$$
 if $0 \leqslant t \leqslant t_0$.

Let $p(t) = q(t)/\omega(q(t))$. Clearly, such p fulfills the items (a) and (b) of Proposition 1 (note that ω restricted to $E \times \{0\}$ is real-analytic). To show (c), we only need to check that the derivative of p(t), as a map into \hat{Z}_{ω} , is bounded. We have

$$D[p(t)](v) = \frac{1}{\omega^2(q(t))} D[\omega(q(t))](v) \cdot q(t) + \frac{1}{\omega(q(t))} D[q(t)].$$

From (c') and (d), it follows that the second summand is ω -bounded on $[0, t_0]$. Since $D[\omega(q(t))](v) = \langle D[q(t)](v), q(t) \rangle_{\omega}/\omega(q(t))$, using one more time (c') and (d), the first summand of D[p(t)](v) is also ω -bounded on $[0, t_0]$.

Pick $z_0 \in S_{\omega} \cap (E \times \{0\})$ so that $\langle z_0, \hat{x} \rangle_{\omega} \neq 0$ and let $d(z) = L\omega(z - z_0)$, $z \in S_{\omega}$, for a suitable constant L > 0. For $z = (x, y) \in \hat{S}_{\omega}$, we let

$$h(z) = (A(p(d(z))(x), (v),$$

where A is that of Lemma 2 (here, $\langle x, x' \rangle_{\omega} = \langle Tx, Tx' \rangle$, where $\langle \cdot, \cdot \rangle$ is the inner product on H). For $x_0 \in \hat{S}_{\omega} \cap \hat{E}_{\omega} \times \{0\}$, we write

$$\bar{A}(z) = (A(x_0)(x), y), \qquad z = (x, y) \in \hat{Z}_{aa}.$$

Employing Lemma 2(a), we see that

$$\omega^{2}(\overline{A}(z)) = \omega^{2}(A(x_{0})(x)) + ||y||_{F}^{2}$$
$$= ||x||^{2} + ||y||_{F}^{2}.$$

It follows that $\vec{A}: \hat{Z}_{\omega} \to \hat{Z}_{\omega}$ is an isometry. Moreover, since $\vec{A}^2(z) = (A^2(x_0), y) = (x, y)$ (use Lemma 2(a)), then \vec{A}^2 is the identity operator.

Remark 4. The observations from Remark 1 hold true in the case of \hat{Z}_{ω} .

COROLLARY 1. Let E be an infinite-dimensional separable Banach space (or, more generally admitting a total sequence $\{x_n^*: n \in \mathbb{N}\} \subset E^*$). If E admits a real-analytic (resp., C^p , $p = 1, 2, ..., \infty$) norm $\|\cdot\|$, then the unit $\|\cdot\|$ -sphere $S = \{x \in E \mid \|x\| = 1\}$ is real-analytically (resp., C^p) isomorphic to a 1-codimensional closed linear subspace E_0 of E.

<u>Proof.</u> We can assume that $||x_n^*|| \le 1$, $n \in \mathbb{N}$. Let $\omega(x) = \sqrt{\sum_{n=0}^{\infty} (x_n^*(x)/2^n)^2}$, $x \in E$. We can further assume that the norm ω is incomplete on E. (Otherwise, (E, ω) would be a separable, infinite dimensional, Hilbert space and we could easily find an incomplete continuous norm ω' on (E, ω) ; we could then replace ω by ω' .)

By Lemma 1, there exists a real-analytic (resp., C^p) isomorphism $h_1: S \xrightarrow{\text{onto}} S_{\omega} = \{x \in E \mid \omega(x) = 1\}$. By a special case of Proposition 2 (where $F = \{0\}$), there exists $x_0 \in S_{\omega}$ and a real-analytic (resp., C^p) isomorphism $h: S_{\omega} \setminus \{x_0\} \xrightarrow{\text{onto}} S_{\omega}$. Let $\pi_{x_0}: S_{\omega} \setminus \{x_0\} \to P_{x_0}$ be the stereographic projection of Lemma 4, and $a(x) = x + x_0$, $x \in P_{x_0}$. We see that $f = a \cap \pi_{x_0} \cap h^{-1} \cap h_1$ is a required isomorphism of S onto $P_{x_0} + x_0$; the latter space, in turn, is isomorphic to E_0 .

Remark 5. Observe that if E' is a dense linear subspace of E, then we can always pick x_0 in the ω -closure of E'. An inspection of the proof of Corollary 1 yields that f is a real-analytic isomorphism of $S \cap E'$ onto a 1-codimensional closed linear subspace of E'. In particular, the unit sphere of any infinite-dimensional pre-Hilbert space H is real-analytically isomorphic to a closed 1-codimensional subspace H_0 (which itself may not be isomorphic to H, see [vM]).

COROLLARY 2. Let μ be a measure so that $L^p(\mu)$ is infinite-dimensional. If p = 2n, $n \in \mathbb{N}$, then the unit sphere of $L^{2n}(\mu)$ (with respect to the standard norm $\|\cdot\|_{2n}$) is real-analytically isomorphic to $L^{2n}(\mu)$.

Proof. It can be checked that $x \to \|x\|_{2n}^{2n}$ is a polynomial [DGZ, p. 184], hence $\|\cdot\|_{2n}$ is real-analytic. Moreover, $L^p(\mu)$ can always be represented as $E \times F$ for some separable Banach space. (Choose a sequence of measurable sets (A_n) with $0 < \mu_n(A_n) < \infty$ with $A_i \cap A_j = \emptyset$ for $i \neq j$, and let E be the closed span of characteristic functions of A_n 's. Then, E is isomorphic to l^p , and E is complemented in $L^p(\mu)$. This also shows that a closed 1-codimensional subspace of $L^p(\mu)$ is isomorphic to $L^p(\mu)$.)

Now we can repeat the argument of the proof of Corollary 1 (this time we use the full strength of Proposition 2).

4. FINAL REMARKS

Let E be an infinite-dimensional separable Banach space whose norm $\|\cdot\|$ is real-analytic (resp., of class C^p , $p=1,2,...,\infty$). Then employing results of [Dob1] and Corollary 1, we get

COROLLARY 3. For every compact set $K \subset S = \{x \in E \mid ||x|| = 1\}$, there exists a real-analytic (resp., C^p) isomorphism of $S \setminus K$ onto S.

In the case of $p = 1, 2, ..., \infty$ we can do better.

PROPOSITION 3. There exists a C^p isomorphism $f: E \setminus K \xrightarrow{\text{onto}} E$ such that $f(\lambda S \cap (E \setminus K)) = \lambda S$ for every $\lambda \ge 0$. Moreover, f can be chosen to have support in an arbitrary neighborhood G of S (i.e., f(x) = x off G).

LEMMA 5. Let ω be a C^p (resp., real-analytic) norm on E. There exists $x_0 \in S_\omega = \{x \in E \mid \omega(x) = 1\}$, $\varepsilon > 0$, and a C^p (resp., real-analytic) isomorphism h: $U_\varepsilon \setminus I_{\varepsilon/2} \xrightarrow{\text{onto}} U_\varepsilon$ such that $h(\lambda S_\omega \cap E \setminus \{x_0\}) = \lambda S_\omega$ for every $|\lambda - 1| < \varepsilon$; here $U_\varepsilon = \{x \in E \mid |\omega(x) - 1| < \varepsilon\}$ and $I_{\varepsilon/2} = \{tx_0 \mid |t - 1| \le \varepsilon/2\}$.

Proof. As indicated in the proof of Proposition 1 (see also the proof of Proposition 2), the formula describing h establishes a C^p (resp., real-analytic isomorphism of $U_{\varepsilon}\backslash\{x_0\}$ onto U_{ε} for some $\varepsilon>0$ and $x_0\in S_{\omega}$, and satisfies the condition that $h(\lambda S_{\omega}\cap E\backslash\{x_0\})=\lambda S_{\omega}$ for every $|\lambda-1|<\varepsilon$. We use here the fact that $\langle x_0,p(0)\rangle_{\omega}\neq 0$. However, if ε is small, then $\langle x,p(0)\rangle_{\omega}\neq 0$ for all $x\in I_{\varepsilon/2}$. Consequently, h will "delete" $x\in I_{\varepsilon/2}$ if only we guarantee that d(x)=0. Therefore, the function $d(x)=L\omega(x-x_0)$ must be replaced by ψ which is of class C^p (resp. real-analytic), vanishes precisely on the set $I_{\varepsilon/2}$ and satisfies $|\psi(x)-\psi(x')|\leqslant L\omega(x-x')$,

 $x, x' \in U_v$. As shown in [Dob1, Lemma 2.2] such real-analytic functions ψ always exist (provided E is separable). Hence, replacing d by a suitable ψ we see that h is a required isomorphism.

LEMMA 6. Using the notation of Lemma 5, there exists a C^p (resp., real-analytic) isomorphism h_2 of $U_{\varepsilon/4}$ onto $P_{x_0} \oplus [-1 - (\varepsilon/4), -1 + (\varepsilon/4)] \cdot x_0 \subset E$, so that $h_2(\lambda S_{\omega}) = P_{x_0} \oplus \{-\lambda x_0\}$ for every $|\lambda - 1| < \varepsilon/4$, where P_{x_0} is the hyperplane tangent to S_{ω} at $-x_0$.

Proof. It is clear that since P_x is tangent to S_ω at $-x_0$, then $P_{x_0} \oplus \{-\lambda x_0\}$ is tangent to λS_ω at $-\lambda x_\omega$ for every $|\lambda - 1| < \varepsilon/4$. Let π_λ be the stereographic projection of $\lambda S_\omega \setminus \{\lambda x_0\}$ onto $P_{x_0} \oplus \{-\lambda x_0\}$. We let $h_2(x) = \pi_\lambda \cdot h^{-1}(x)$, $x \in U_{\varepsilon/4}$, where h is that of Lemma 5.

Proof of Proposition 3. First we show that given a compact subset L of S_{ω} , there exists a C^p (resp., real-analytic) isomorphism H of $U_{\varepsilon/4} \setminus L$ onto $U_{\varepsilon/4}$ such that $H(\lambda S_{\omega} \cap (E \setminus L)) = \lambda S_{\omega}$ for $|\lambda - 1| < \varepsilon/4$ and such that H(x) = x if $|\omega(x) - 1| > \varepsilon/8$.

To this end, we use [Dob1, Corollary 6.4] to find λ -level preserving C^p isomorphism h_3 of $(P_{x_0} \oplus \mathbb{R} x_0) \setminus h_2(L)$ onto $P_{x_0} \oplus \mathbb{R} x_0$ so that $h_3(z) = z$ for every $z = (x, \lambda x_0)$, $|\lambda + 1| > \varepsilon/8$. We let $H = h_2^{-1} \cap h_3 \cap (h_2 \mid S \setminus L)$.

To finish the proof, let h_1 be the map of Lemma 1 defined by the same formula on $G_{\varepsilon,4} = \{x \in E \mid |||x|| - 1| < \varepsilon/4\}$ for $\omega_1 = ||\cdot||$ and $\omega_2 = \omega$. Construct H as above to delete $L = h_1(K)$, and let

$$f(x) = \begin{cases} h_1^{-1} H h_1(x), & x \in G_{\varepsilon/4} \\ x, & ||x| - 1| > \varepsilon/8. \end{cases}$$

It is clear that f has the required properties (obviously, $\varepsilon > 0$ can be chosen as small as one wishes).

REFERENCES

- [Bes] C. Bessaga, Every infinite-dimensional Hilbert space is diffeomorphic with its unit sphere, Bull. Acad. Polon. Sci. Sér. Sci. Math. 14 (1966), 27-31.
- [BK] D. BURGHELEA AND N. H. KUIPER, Hilbert manifolds, Ann. of Math. 90 (1969), 379–417.
- [DGZ] R. DEVILLE, G. GODEFROY, AND V. ZIZLER, "Smoothness and Renormings in Banach Spaces," Longman Scientific & Technical, Essex/New York, 1993.
- [Die] J. DIEUDONNÉ, "Foundations of Modern Analysis," Academic Press, New York/London, 1960.
- [Dobl] T. Dobrowolski, Smooth and R-analytic negligibility of subsets and extension of homeomorphism in Banach spaces, Studia Math. 65 (1979), 115-139.
- [Dob2] T. Dobrowolski, Extension of Bessaga's negligibility technique to certain infinitedimensional groups, Bull. Acad. Polon. Sci. Sér. Sci. Math. 26 (1978), 535-545.

- [EE] J. EELS AND K. B. ELWORTHY, Open embeddings of certain Banach manifolds, Ann. of Math. 91 (1970), 465–485.
- [Lang] S. Lang, "Differential Manifolds," Springer-Verlag, New York/Berlin/Heidelberg/Tokyo, 1985.
- [vM] J. VAN MILL, Domain invariance in infinite-dimensional linear spaces, Proc. Amer. Math. Soc. 101 (1987), 173-180.
- [Wh] E. F. WHITTLESEY, Analytic functions in Banach spaces, *Proc. Amer. Math. Soc.* 16 (1965), 1077–1083.