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The title statement is proved. Similar results for arbitrary Banach spaces are
obtained in both the real-analytic and the C” settings. ¢ 1995 Academic Press. Inc

1. INTRODUCTION

Let E=(E, ||-|) be a Banach space and let «v be a continuous norm on
E (ie., o(x)< C||x| for some constant C >0 and all xe E). Assume that
« 1s real-analytic (resp., of class C?, p=1,2, .., o), that is, @ is real-
analytic (resp., of class C”) on E\{0}. Let S, ={xe E|w(x)=1} be the
w-unit sphere. Then S, carries the natural real-analytic (resp., C7)
mantfold structure determined as follows. For every e §S,,, let P. be the
hyperplane tangent to S, at —z. Write =n. for the stereographic projection
of S,\{z} onto P.. The desired manifold structure on S, is defined by the
family {7.|z€S,,}. It can be checked that S,, is a real-analytic (resp., C*)
submanifold, modelled on a codimension one, closed linear subspace £, of
E; cf. [ Lang, 11, §2, Example]. (The space E, can be identified with ker x*,
where 0 # x* € E*.) If E is infinite-dimensional, then the homotopy types of
S,, and of E, coincide and, applying results of infinite-dimensional topol-
ogy, S, is homeomorphic to E,. The question arises whether S, and E,
are real-analytically (resp., C¥) isomorphic.

This paper answers that question affirmatively in the case of separable E.
Since, obviously, a Hilbertian norm is real-analytic then, in particular, we
get
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THEOREM. Let H be an infinite-dimensional Hilbert space and let S be the
unit sphere of H. There exists a real-analytic isomorphism f from S onto H.

This provides an affirmative answer to Bessaga’s Problem 6 in [Bes],
and extends his theorem therein stating that S and H are C” isomorphic.
Let us recall that Bessaga’s theorem was an important ingredient in the
theory of infinite-dimensional C” Hilbert manifolds. The main results of
this theory state that: (1) the homotopy and the C” isomorphism
classifications of such manifoids coincide (see [BK]), and (2) every such
manifold admits a C~ open embedding into H [ EE]. It would be interest-
ing to extend the results (1) and (2) to the real-analytic category. Our
result can be viewed as a small move towards this (obviously, the basic
difference between the C” and the real-analytic categories is the lack of
real-analytic partitions of unity in the real-analytic setting).

Amazingly enough not only do we show that there exists a real-analytic
isomorphism /: S — H but, in fact, we give an explicit formula for /. The
key ingredient of our approach is Bessaga’s incomplete norm technique
which we adapt here to delete one-point sets from the sphere S in a real-
analytic way. Without going into details, let us say that we replace the
natural affine action of H on H by the (natural) action of the group of
isometries of H on S (cf. [Dob2]).

As a by-product of our approach we construct a C”-isomorphism of
H\{z} onto H, |z{ =1, which preserves all concentric spheres (and, in
fact, can be identity off an arbitrary neighborhood of S). Moreover, {z}
can be replaced by an arbitrary compact set K< S. This shows that the
unit closed ball B, a C”-manifold having S as its boundary, is C~
isomorphic to B\K whose boundary is just S\K.

Some results concerning arbitary Banach (including nonseparable)
spaces are also discussed along these lines.

2. THE PROOF OF THEOREM
We start with the following elementary observation.

Lemma 1. Let E be a Banach space, and let «| and ;5 be real-analvtic
(resp., of class C*, p=1,2, .., oc) norms on E. The formula

h(x)= o

= R xekFE
(- .X)

establishes a real-analytic (resp., C”) isomorphism of S, onto S,..

[
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Proof. Since S, and §,,, are submanifolds of E, it is enough to notice
that i1, and h; '(y)=y/w,(y), y€S,,,. are real-analytic (resp., of class C”)
on some neighborhoods of §,,, and §,,, respectively. |

(2

Let T: E— H be a continuous injective operator of a Banach space
E=(E, | ||) into a Hilbert space (H, {-.->). For every x, ye E, we write

{x oy, =<LTx, Ty).

Then (E, (-, ->,,) is a pre-Hilbert space whose completion will be denoted
by E,; clearly, both the inner product (x,y)— {x,v>, and the norm
X - m(x)=/{x, x),, are real-analytic functions on E,,. We let
S,={xek, |owx) =1},
and
S,=ixeE|xeS,).

We will consider E as a dense subspace of £, it follows that S, is dense

in$,,.
PROPOSITION 1. Suppose that there exists a path p: [0, t,) = S,,. t,>0,
satisfving the following conditions:
(a) p(t)eS,, for 0<t<t,, and p(0)e S, \S.,;
(b) pl(0,14):(0,1,) > S, is real-analytic as a map into (E, |-1);

(c) there exists a constant M >0 such that w{ p{t) —p(s)) <M |t —s],
0<t, s<ty.

Fix an arbitrary z€8§,, so that {(z,p(0)>,#0. Let 0<L <min{t,,2,
1/8M}, and write d(x)= Lo(x —z). Then the formula

hixy=x—=2x, pldx))>,, pld(x)), xeS Nz}

establishes a real-analytic isomorphism of S \{z} onto S,,.

LEMMA 2. For every x € S’m, let A= A(x) be given by
A(py=y—=2{y, x>, -x

Then, we have
(a) A:E, 2% E_ is an isometry such that A* is the identity operator;

(b) if xo€S,,, then A | E is a continuous invertible operator of E onto
E; in particular, A(S,,) =S, and A(S\S.,) =S \S,,;

() @(A(x)(y)—AX)Ny)) <2w0(x —X') for every x, X', yeS,,.
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Proof. Since w*(x)=1, we have

(AP =y =240 XD, X,y =2 XD, XD,
=0y =2 x> =2 x> +4 (3 x> (X D,
=P YDu=w(y)

fz=A(y)=yp—2{py, x>, -x,z€8,, then (z, x>, =<y, x>, —2 {yo x>,
= —{y, x),; consequently, z=y+2 {z, x>, x. Hence, we have that y =
=2z x>, -xand so 4 z)=A(z). The item (a) is shown.

The item (b) is obvious. To show (c), let x, X, ve $,, and estimate

O(AXHY) =AWy =y, XD, - x =3 XD, X)
SO P 3, X=X D, )+ y, X', X
=y X', X"
<IKyox=xD, o)+ [ XD, olx—x7)
<o p)olx —x")+o(y) o(x')olx —")

=2m(x—x"). |1

Proof of Proposition 1. Observe that there exists ¢>0 so that #(x)
makes sense for every x in U,= {.\‘EE‘“,| lo(x)—1]<g}. Since h(x)=
A( pld(x))(x), by Lemma 2(a), h: U, — U,, moreover, w(h(x))=w(x).

We will show that #: §,, — §,, is a bijection (in general, # is bijection on
U, for some &> 0). To this end, fix ye$,, and designate @: $_ — S, by

P(x) = A(@(x))( ). xeS,.
where @(x) = p(d(x)). By our assumptions, we can estimate as follows
(@(x) —@(x")) <M |d(x) —d(x")| < MLo(x — x')
<to(x—x).
This together with Lemma 2(c) yields
@(P(x) — P(x")) = (A(p(x)y) — Alp(x))( ¥))
<20(p(x) — @(xX')} <2 jolx —X') = fo(x — X')

for every x,x'eS,,. Applying the Banach Contraction Principle to the
complete metric space S, and to the map ¢: $, — S, we infer that there
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exists a unique ve S, such that x=@®(x)=A(@(x))( y). Using Lemma
2(a), we equivalently have that

h(x)=Al@(x)Ny) = A {@(x))(y)=y.
The same argument shows that ii: U, — U, is a bijection for some ¢> 0.

We claim that A(S,\{z})=S,. Suppose xeS, \{z}. It follows that
d(x)>0. By the assumption (a), @(x)=p(d(x))e S, ,; applying Lemma
2(b), h{x) = A(p(x))x)e S,,. Now suppose that k(x)=y for some ye§,,.
Then x cannot be in S \S,,; otherwise we would have d(x) >0, and since
e(x)=p(d(x))eS,,. by Lemma 2(b), h(x)eS \S,. a contradiction.
Moreover, x cannot be z; otherwise @(z)=p(0) and hence y=4h(z)=
A(p0))(z2) =2 -2z p(0)>,,-p(0)eS \S,, because (=, p(0)>,#0 and
p(0)eS\S....

We have h(x)=x—2 {x, p(d(x))),, - pld(x)), xe S \{z}. Since d is real-
analytic on S, \{z} and p | (0, #,), as a map into E, is real-analytic as well,
h is also real-analytic. To show the real-analyticity of 4 ', consider

Hix.yy=x—A(@(x))y)

defined on U, x U, into E,,. Below we will show that for every pair (x, y)e
S.,xS,, x#z. the operator

r=H) b g
dx

is invertible. Then, by an application of the implicit function theorem
{cf. [Die, 10.2.5] and [Wh]) we conclude that A~' which satisfies
H(h~'(y).»)=0, is real-analytic when restricted to S,,.

Since H(x,y)=x+2{y, @(x)>, -@(x)—y, it follows that T{(v)=
v+ 2D[{x, (X)), - @(x)](r), where D stands for the derivative operator.
We see that

DLy o(x)) 1) - o(x)+ <y, o(x)) ., - DLo(x)](v)
={p. DL ]w)>, - @(x)+ (v, @(x)),,- DLo(x)](v).

From (c) we get D[o(x)(v) =rv,D[d(x)](v), where v,€ E with
w(vg) <M. Moreover, we have supf{|D[d(x)](v)||w(r)<1} <L It
follows that sup{w(D[@(x)](v)} | w(r) <1} KLM <%, and consequently
sup{2a(D[ < y, p(x}> - @(x)](v)) | () <1} <2(5+ 1) =1 We can now
easily conclude that T is invertible. The proof is complete. [}
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Remark 1. The above argument shows that

{a) there exists ¢ >0 so that & establishes a real-analytic isomorphism
of {xeE||w(x)—1|<e}\{z} onto {xeE||w(x)— 1| <e} that preserves
the concentric spheres;

(b) with such & /A UN{z} =% U\{h(z)} is a real-analytic
1somorphism;

(c) h:S,—S, is a homeomorphism, and both /s and h~' are
Lipschitz.

To justify (¢). let x=Hh '(y)and ¥'=h (). We have

w{x — X" ) =w(A(@(x))(y)— Al@(x))(¥))
(AP ¥ ) — Al@(x D)) + ol Al (X)) 3" — A(@(xX) V')

oy —y)+iolx—x)

We see that 3o(h~'(y) =2 '(y' ) <wly—)').

Remark 2. Suitable C” versions of Proposition 1 and Remark 2 hold
true.

Below we will give an explicit formula for p(7) in the case of E= /. Here
we will consider /*={x=(x,)," | X _,x;<oc} with the norm |xj =
VI _ox2. Let T: [> - [* be given by

-\'” ¥ 2
T(.\‘):<§7>’ '\‘:(-\'”)”:061-.

The space lA:'“ can be identified with {x=(x,)/_,| X7, (x,2") <}

2n

equipped with the inner product {x,y>,=3>7_,x,»,/2""
LemMA 3. There exists a path p: [0, 1) — S, fulfilling the items (a)—(c)
of Proposition 1.
Proof. For 0<r<1, welet g(r)=(1.1, /% ..)el>. We have that

, @ " 2_ o t 2 "— 1 . 4
w*(g(t)) = ), <j{> —"ZO[<§” T 114 4-1?

n==0

for 0 <r<1. We let po(t)zt\/(4—r2),/2)q(r), 0<r<, and set

ply=poll —1), 0<r<l.
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Clearly, p: [0,11—38,, and p(0)=py(1) =(,/3/2) g(1)€ S,\S.,. More-
over, p | (0, 1): (0, 1) > S, =17 is redl andlytlc It remains to establish the

item (c) of Proposition 1. To this end, it is enough to show that the
derivative of p,., as a map into /2, has bounded norm.

We have
\/1 [2 ' ll ,2
L[[)()(t)] ( 1> f}(f) 1E|(1(’)|

,2
t)+\/ 1 ——D[g(t)];
7\/4){_ 7 Platt)]

consequently,

(D[ pt)])

f E
g—~——w(<(r))+\/l—~(o(D[c(l) )
2./4- ¢ ! 4 "o

{ 2 \/ e
L= =+ /| ——w(D NHl)
2 /4 J4- 1 g @ PLan]

t 2

t
=m+\/1 —Z(U(D[‘l(’)])~

For 0<r<1, we have o™ (D[g()]) =27 (n" 12" <y " 2" =
2/(2 —1)>. This together with the above yields

TN

(z)(D[[)()(I)])<4_’ 7 3

for every 0 <t < 1. Summanizing, we have w{D[ po(t)]) <3. '}

We have arrived at the last step of our proof.

LemMa 4. Let E be a Banach space and o be a real-analytic (resp., C?,
p=12.,0) norm on E. Let €S, ={xecE|w(x)=1}, and let P. be
the hyperplune tangent to S at —:z. Then the stereographic projection
n.: S \{z} = P establishes a real-analytic (resp., C?) isomorphism.

Proof. Let x*eE* be the derivative of w at - Then P.=
{xeE|x*(x+z)=0}. We have
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To obtain n_', let yeP. and find the unique ¢ such that
(z+1(y—=z))=1. We have that n. '(y )=z +1#(y—z). Since for F(y,1)=
a(z+t(y—z))— 1 we have

OF(y, 1)
ot

=D[w(z+Hy—x)](y—z)#0.

The implicit function theorem implies that y+—t=1#(y) is real-analytic
(resp., of class C?). The lemma easily follows. |

Proof of Theorem. We can identify H with the product /? x H', where
H' 1s a Hilbert space. Let T: PxH - xH be given by T{(x,v)=
((x,/2"),v), (x,v)=((x,), _g. V) E 1> x H'. Consider the incomplete norm
on /*x H' induced by the operator 7. Apply Lemma 1 to the original
norm «, = ||-|| and the incomplete, real-analytic one, «, = to obtain a
real-analytic isomorphism /,: § -2 § . Then apply Lemma 3 to find a
path p: [0, 1)—= S, n(/*x {0}, w) satisfying the requirements (a)-(c) of
Proposition 1. Then apply Proposition 1 to obtain a real-analytic
isomorphism A: S,\{z} — S,, for some z€S,,. Apply Lemma 4 to /*x H',
m and to the above - to get a real-analytic 1som0rphlsm of S, \{z} onto
P_. Let i: P.— H be the composition of the affine map x - x+ - of P_ onto
a closed 1-codimensional subspace H, of H, and an isomorphism of H,
onto H. Finally, set f=i n_ h ' h:S—>H |

Remark 3. In case of H =17 we have the following formulas for h,, &
i and =, the components of f,

h| \)——“—”\—‘——; -\‘:('\.n):‘:OES;

\/Z,, 0 {Xa/2")

(\)—< v, —2 Z (.v,,d”'(x)y‘z:") L x=(n)fee S0, ),
n= n=0

0

u

where (1(\)——,4\/7\0—1 +Z”_l 1/1‘211)2;

2x 2x, y
n__(x)=<_1, e et > Y= (6 e SN (L0, )
Hx)={(x,. X2, ..), x=(—1,x.,x, .)€l

Here, S, = {{x,), o€l | X ,(x,/2") =1}.
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2. A GENERALIZATION TO BANACH SPACES

Let £ be a Banach space that admits a continuous injective operator
T: E— H into a Hilbert space H such that 77' is not continuous.
Moreover, let (F, ||-|l;) be a Banach space whose norm ||, 1s real-
analytic (resp., of class C”, p=1,2, .., oc). We will consider the space
Z=ExF and the incomplete norm (X, }*)=\/‘\T(,\')H2+ 'v]:. We see
that « is a real-analytic (resp., of class C”).

ProrosiTiON 2. There exists a real-analytic (resp., CP) isomorphism
onto

e S \{zp} 2 S, where S,={zeZ|w(z)=1} and z, is some point

inS,.

Proof. We shall show the existence of a path p that satisfies (a)-(c) of
Proposition 1. Then, making suitable adjustments, we shall follow the
proof of Proposition 1.

Since Ex {0} cZ is w-incomplete, we can pick 2e Z,\Z which is in
E,, x {0}, the w-closure of Ex {0} in Z,. We can assume that () =1. By
a result of [ Dob 1, Sublemma 3.2] there exists a path ¢: [0, 1) —» Z,, such
that

(a') q0)==xand ¢ [(0,1):(0,1)— E;

{b') ¢]1(0,1) is real-analytic as a map into E;

(c") (gt —qg(s)) <M |t —s]| for some M >0 and all ¢, s.
Since e S,,. there exists 7,>0 so that

(d) 3<w(q(t) <2if0<r <1y,

Let p(t) =q(t)/wl(qg(t)). Clearly, such p fulfills the items (a) and (b} of
Proposition | (note that o restricted to £ x {0} is real-analytic). To show
(¢), we only need to check that the derivative of p(r). as a map into Z,,.
is bounded. We have

Dl p(t)J{v) = D[exg(1))](v) - q(1) +

Cwigln) w((/(t))D[W)]'

From (¢’) and (d), it follows that the second summand is w-bounded on
[0.1,]. Since D[o(g(t)J{v)={D{g()](v), (1)) /olg{t)), using one
more time (¢') and (d), the first summand of D[ p(¢)](v) is also w-bounded
on [0, 4]

Pick zye S, n(Ex{0}) so that {(z,, £, #0 and let d(z) = Low(z — z,).
ze S, for a suitable constant L >0. For z=(x, y)e $,,. we let

w?*

ey = (A(pld(z=))(x), (y),
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where A is that of Lemma 2 (here, {x, x>, =(Tx, Tx'>, where {-, > 18
the inner product on H). For x,eS$,n E, x {0}, we write

Z(:)=(A(x0)(.\'),y), z={(x, y)eZw.
Employing Lemma 2(a), we see that

@} A(2)) = (A(x)(x) + | ¥ %

= |x[*+ I yliz

It follows that 4: 2, — Z, is an isometry. Moreover, since A(z)=
(A%(xo). ¥) =(x, ¥) (use Lemma 2(a)), then 47 is the identity operator.

Remark 4. The observations from Remark 1 hold true in the case
of Z,,.

COROLLARY 1. Let E be an infinite-dimensional separable Banach space
(or, more generally admitting a total sequence {xf:neN}cE*). If E
admits a real-analytic (resp., C?, p=1,2, .., cc) norm ||-||, then the unit
|- |-sphere S={x € E | |lx|| =1} is real-analytically (resp., C") isomorphic to
a l-codimensional closed linear subspace E, of E.

Proof. We can assume that |[x¥[|<l, neN. Let «w{x)=
\/Z,;"=0(x,’,*(x)/2")3, xe E. We can further assume that the norm @ is
incomplete on E. (Otherwise, (E, @) would be a separable, infinite dimen-
sional, Hilbert space and we could easily find an incomplete continuous
norm ' on {E, w); we could then replace @ by w'.)

By Lemma 1, there exists a real-analytic (resp., C”) isomorphism
hy: S5 S, ={xeE|w(x)=1}. By a special case of Proposition 2
(where F={0}), there exists x,€S, and a real-analytic (resp, C”)
isomorphism A: S, \{x,} = S,,. Let 7, : S, \{x,} = P,, be the stereo-
graphic projection of Lemma 4, and a(x)=x+x,, xe P . We see that
f=a m,~h7'h is a required isomorphism of S onto P, + x,; the latter
space, in turn, is isomorphic to E,. |

o

Remark 5. Observe that if E' is a dense linear subspace of E, then we
can always pick x, in the w-closure of E’. An inspection of the proof of
Corollary 1 yields that f is a real-analytic isomorphism of S~ £’ onto a
1-codimensional closed linear subspace of E’. In particular, the unit sphere
of any infinite-dimensional pre-Hilbert space H is real-analytically iso-
morphic to a closed I-codimensional subspace H, (which itself may not be
isomorphic to H, see [VM]).

580134 2-8
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COROLLARY 2. Let pu be a measure so that L7(u) is infinite-dimensional.
If p=2n, ne N, then the unit sphere of L¥(u) (with respect to the standard
norm |- |15, is real-analytically isomorphic to L¥(u).

Proof. It can be checked that x — ||x| 3" is a polynomial [ DGZ, p. 184],
hence | - ||,, is real-analytic. Moreover, L”(x) can always be represented as
E x F for some separable Banach space. (Choose a sequence of measurable
sets (A,) with 0<y,(A4,) < oo with 4,4, = for i #j, and let £ be the
closed span of characteristic functions of 4,’s. Then, £ is isomorphic to /7,
and E is complemented in L”(x). This also shows that a closed 1-codimen-
sional subspace of L”(x) is isomorphic to L7(u).)

Now we can repeat the argument of the proof of Corollary 1 (this time
we use the full strength of Proposition 2). ||

4. FINAL REMARKS

Let E be an infinite-dimensional separable Banach space whose norm
|- 1s real-analytic (resp., of class C”, p=1,2, .., oc). Then employing
results of [ Dobl] and Corollary 1, we get

COROLLARY 3. For every compact set K S={xeE|{x||=1}, there
exists a real-analytic (resp., C?) isomorphism of S\K onto S.

In the case of p=1, 2, .., oc we can do better.

PROPOSITION 3.  There exists a C” isomorphism [: E\K 2% E such that
FAS N (ENK)) = AS for every 2=0. Moreover, [ can be chosen to have sup-
port in an arbitrary neighborhood G of S (ie., f(x)=x off G).

LEMMA 5. Let w be a C? (resp., real-analytic) norm on E. There exists
xo€S,={xeE|wx)=1}, ¢>0, and a C" (resp, real-analytic)
isomorphism h: UNI, , =2 U, such that WS, E\{x,})=4S,, for every
A—1]<e here U ={xeE||lo(x)—1|<e} and I,={1x,| |t —1]| <e/2}.

Proof.  As indicated in the proof of Proposition 1 (see also the proof of
Proposition 2), the formula describing / establishes a C” (resp., real-
analytic isomorphism of U,\{x,} onto U, for some ¢ >0 and x,€S,,. and
satisfies the condition that A(1S,, ~ E\{x,}) =4S, for every |2 — 1| <& We
use here the fact that {x, p(0))> ,#0. However, if ¢ is small, then
{x, p(0)>,,#0 for all xel.,. Consequently, & will “delete” xe/,, if only
we guarantee that d(x)=0. Therefore, the function d(x) = Lw(x — x,) must
be replaced by  which is of class C? (resp. real-analytic), vanishes
precisely on the set [, and satisfies [W(x) — (x| < Lo(x — X'),
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X, x" e U.. As shown in [ Dobl, Lemma 2.2] such real-analytic functions
always exist (provided E is separable). Hence, replacing 4 by a suitable
we see that /i is a required isomorphism. ||

LEMMA 6. Using the notation of Lemima S, there exists a C” (resp., real-
analytic) isomorphism hy of U4 onto P, @[ —1—(e/4), —14+(e/4)]:
Xo < E. s0 that hy(2S,,) =P, ®{ —Ax,} for cvery |1 —1| <&/4, where P is
the hyperplane tangent to S, at —x,.

3

Proof. Tt is clear that since P, is tangent to S, at —x,, then P @
{ —Jx,} is tangent to AS,, at —4x,, for every |A—1| <¢/4. Let n; be the

stereographic projection of 45, \{ix,} onto P, @ { —Ax,}. We let hy(x)=
n, h Yx). xeU,_,, where i is that of Lemma 5. |

Proof of Proposition 3. First we show that given a compact subset L of
S.,. there exists a C” (resp., real-analytic) isomorphism H of U, ,\L onto
U., such that H(AS,n(E\L))=2S, for |2—1|<eg4 and such that
Hix)=xif |[o(x)— 1| >¢8.

To this end, we use [ Dobl, Corollary 6.4] to find A-level preserving C”
isomorphism /i; of (P, @ Rx,)\ia(L) onto P, @ Rx, so that i;(z) == for
every - =(x, Ax,), |[A+1]>¢/8 Welet H=h,' hy (hy| S\L).

To finish the proof, let 4, be the map of Lemma 1 defined by the same
formula on G,,={xeE||ix]— 1| <¢/4} for o, =]-|| and w,=w. Con-
struct H as above to delete L= A, (K), and let

. h"Hhy(x), xeG,y
Jx)= {\ llx]—1] > ¢/8.

It is clear that / has the required properties (obviously, ¢ >0 can be chosen
as small as one wishes). ||
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