Projections of a Regular Polyhedron

Paul Barbaroux

August 01, 2025

Il this note we focus on the following exercise⁽¹⁾:

Exercise 1: In the usual 3-dimensional euclidian space, consider a regular polyhedron and a plane \mathcal{P} . We denote S the sum of squared lengths of the edges, and $S_{\mathcal{P}}$ the sum of squared lengths of the orthogonal projections of the edges on \mathcal{P} . Prove that $S_{\mathcal{P}}/S=2/3$. Then generalize.

Before we give a solution, let's begin with a simpler statement which will allow to understand the main idea: sphericity of an ellispoïd of inertia can be viewed as the geometric form of Schur's Lemma.

Exercise 2: In the usual 3-dimensional euclidian space, let S be the set of vertices of a regular polyhedron, and D a line passing through the center. Show that $\sum_{s \in S} d(s, D)^2$ does not depend on D.

A physicist would give a one-line solution by noticing that $\sum_{s\in S} d(s, \mathcal{D})^2$ is the moment of inertia of S with respect to \mathcal{D} (after providing each vertex with a point mass of value 1), then arguing that the ellipsoïd of inertia is a sphere « from reasons of symmetry ». We will first formalize correctly the symmetry argument, that is in an intrinsic way (without use of a coordinates system).

We will replace points by vectors by setting an origin at the center of the polyhedron. In this note the ambiant space will be a euclidian vector space⁽²⁾ E of dimension $n \neq 0$. The inner product will be denoted by $(\cdot | \cdot)$. Given a vector subspace F, p_F denotes the orthogonal projection on F. Given a set $A \subset E$, we say that an isometry g is an **isometry** of F if the set F is globally invariant under F in F is a subgroup of F in F

First, the symmetry argument relies on the fact that «no direction is particular». Mathematically, this leads to the following definition: we say that a set A of vectors of a euclidian space $has\ enough\ symmetries$ if the group of isometries of A is irreducible $^{(3)}$.

It turns out that this is actually the case for a regular polyhedron:

⁽¹⁾ Readers are invited to look for a solution, based on concepts rather than computations.

⁽²⁾ Real finite-dimensional vector space endowed with an inner product.

We recall that a subgroup G of GL(E) is *irreducible* if the only subspaces of E stable under the action of G are trivial.

Proposition: In a 3-dimensional euclidian space, the set S of vertices of a regular polyhedron has enough symmetries.

Proof: The group G of isometries of S contains at least two rotations of distinct axis and angles not multiple of π (consider rotations stabilizing two adjacent faces). Let F be a G-stable subspace of E, $F \neq \{0\}$. There exists a vector $a \in F \setminus \{0\}$. The axis of at least one of the rotations, call it r, does not contain a. Hence a is not invariant by r, neither anti-invariant (since $\dim(E) = 3$ the only rotations with an anti-invariant vector $a \neq 0$ have angle π). Hence a and r(a) are linearly independent and $\dim F \geqslant 2$. But F^{\perp} is also G-stable, hence $\dim F^{\perp} \geqslant 2$ or $F^{\perp} = \{0\}$. Since $\dim E = 3$ the only possibility is $F^{\perp} = \{0\}$ that is F = E, hence G is irreducible.

We can observe that if F is a subspace of E and $x \in E$ then $d(x, F) = ||p_{F^{\perp}(x)}||$. When $\dim E = 3$ the orthogonal of a line is a plane, thus statement of ex. 2 is a special case of the following theorem, which additionally gives the value $\sum_{s \in S} d(s, \mathcal{D})^2 = (2/3) \times \sum_{s \in S} ||s||^2$.

Theorem 1: Let E be a euclidian vector space and $A \subset E$ a finite set. If A has enough symmetries, then for any subspace $F \subset E$ one has

$$\sum_{a \in A} ||p_F(a)||^2 = \frac{\dim F}{\dim E} \sum_{a \in A} ||a||^2.$$

Proof: For $x \in E$ and $A \subset E$ a finite set, let

$$u_A(x) = \sum_{a \in A} (x \mid a) a.$$

 u_A is clearly a self-adjoint operator⁽¹⁾, hence has an eigenvalue λ . But u_A commutes with all isometries of A: if g is such an isometry, then

$$g(u_A(x)) = \sum_{a \in A} (x \mid a)g(a) = \sum_{a \in A} (g(x) \mid g(a))g(a) = \sum_{b \in A} (g(x) \mid b)b = u_A(g(x)).$$

Therefore, G stabilizes the eigenspace $\operatorname{Ker}(u_A - \lambda \operatorname{id})$. But G is irreducible, hence $\operatorname{Ker}(u_A - \lambda \operatorname{id}) = E$ that is $u_A = \lambda \operatorname{id}$.

Now for every $e \in E$ such that ||e|| = 1, one has

$$\sum_{a \in A} (e \mid a)^2 = \sum_{a \in A} (e \mid a)(a \mid e) = (u_A(e) \mid e) = (\lambda e \mid e) = \lambda ||e||^2 = \lambda.$$

By denoting $(e_i)_{1 \leq i \leq p}$ an orthonormal basis of the subspace F, we obtain

$$\sum_{a \in A} ||p_F(a)||^2 = \sum_{a \in A} \sum_{i=1}^p (e_i \mid a)^2 = \sum_{i=1}^p \sum_{a \in A} (e_i \mid a)^2 = \sum_{i=1}^p \lambda = \lambda \dim F.$$

⁽¹⁾ Actually u_A is the "dual operator of inertia" of A: if ||x|| = 1 then $(u_A(x) | x)$ is the moment of inertia of A w.r. to the hyperplane x^{\perp} .

Which can be viewed as Schur's Lemma applied to G and u_A .

The special case F = E then gives

$$\sum_{a \in A} ||a||^2 = \lambda n \,,$$

which gives the value of λ and completes the proof.

Th. 1 can now be easily extended to a more general result that allows to treat not only ex. 2 but also ex. 1 as well as several other geometric situations. We just have to replace the use of a finite set of vectors by the one of a finite family. Let I be a set (of "indices"). We suppose given an action $(g,i)\mapsto g\cdot i$ of the orthogonal group O(E) on I. We say that a family of vectors $(x_i)_{i\in I}$ is admissible if $g(x_i)=x_{g\cdot i}$ for every $i\in I$ and $g\in O(E)$. As before an isometry of a set $J\subset I$ is an isometry that leaves J globalement unchanged, and we say that J has enough symmetries if its group of isometries is irreducible. Then we have

Theorem 2: Let $f = (x_i)_{i \in I}$ be an admissible family of vectors in a euclidian vector space E and $J \subset I$ a finite set having enough symmetries. Then for every subspace $F \subset E$ one has

$$\sum_{i \in J} ||p_F(x_i)||^2 = \frac{\dim F}{\dim E} \sum_{i \in J} ||x_i||^2.$$

The proof works in the same way as for th. 1 by now considering $u_f(x) = \sum_{i \in J} (x \mid x_i) x_i$

instead of $u_A(x) = \sum_{a \in A} (x \mid a) a$.

Remarks: a) Th. 2 gives back th. 1, when applied to I = E and the identity-indexed family.

- b) Ex. 2 is solved by taking
- $I = E \times E$ and, for $(a, b) \in I$, and $g \in O(E)$, $g \cdot (a, b) = (g(a), g(b))$.
- $x_{(a,b)} = b a$. The admissibility of $(x_{(a,b)})$ comes from g's linearity.
- $J = \{(a,b) \in E \times E, \{a,b\} \text{ is an edge of the polyhedron} \}$ (hence two ordered pairs (a,b) and (b,a) are given for each edge $\{a,b\}$ such that $a \neq b$). Obviously J has enough symmetries, since any isometry of the polyhedron sends every edge to an edge, hence is an isometry of J.
- c) A polyhedron does not need to be regular in order to ex. 1 to hold: it just has to have the same isometry group as the set vertices of a regular polyhedron⁽¹⁾. One can obtain such polyhedra by truncating regular polyhedra (for instance, conclusion of ex. 1 remains true for archimedean solids⁽²⁾) or, on the opposite, by having other polyhedra "grow" on

https://en.wikipedia.org/wiki/Archimedean_solid

https://mathcurve.com//polyedres/archimedien/archimedien.shtml

⁽¹⁾ It is even enough for its isometry group to *contain* the isometry group of some regular polyhedron.

⁽²⁾ See e.g.

faces. For instance, one can "glue" on each face of a regular polyhedron a pyramid or a prism of given height.

d) Let's call a **skeleton** any finite set $J \subset E \times E$. Starting with skeletons of edges of regular polyhedra, or given by remark c), one can easily construct many other ones satisfying the statement of ex. 1 by noticing that the set of such skeletons is stable under translations and disjoint unions.