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Projections of a Regular Polyhedron

Paul Barbaroux

August 01, 2025

1l this note we focus on the following exercise?) :

Exercise 1 : In the usual 3-dimensional euclidian space, consider a regular polyhedron
and a plane P. We denote S the sum of squared lengths of the edges, and Sy the sum of
squared lengths of the orthogonal projections of the edges on P. Prove that Sp/S = 2/3.
Then generalize.

Before we give a solution, let’s begin with a simpler statement which will allow to
understand the main idea : sphericity of an ellispoid of inertia can be viewed as the
geometric form of Schur’s Lemma.

Exercise 2 : In the usual 3-dimensional euclidian space, let § be the set of vertices of a
reqular polyhedron, and D a line passing through the center. Show that Z d(s, @)2 does
SES

not depend on D.

A physicist would give a one-line solution by noticing that Y, ¢ d(s, D)? is the moment
of inertia of S with respect to D (after providing each vertex with a point mass of value
1), then arguing that the ellipsoid of inertia is a sphere « from reasons of symmetry ». We
will first formalize correctly the symmetry argument, that is in an intrinsic way (without
use of a coordinates system).

We will replace points by vectors by setting an origin at the center of the polyhedron.
In this note the ambiant space will be a euclidian vector space@) E of dimension n # 0.
The inner product will be denoted by (- |-). Given a vector subspace F', prp denotes the
orthogonal projection on F. Given a set A C F, we say that an isometry g is an isometry
of A if the set A is globally invariant under g. The set of isometries of A is a subgroup of
O(E).

First, the symmetry argument relies on the fact that «mno direction is particular ».
Mathematically, this leads to the following definition : we say that a set A of vectors of a
euclidian space has enough symmetries if the group of isometries of A is irreducible®.

It turns out that this is actually the case for a regular polyhedron :

Readers are invited to look for a solution, based on concepts rather than computations.
Real finite-dimensional vector space endowed with an inner product.
We recall that a subgroup G of GL(E) is i¢rreducible if the only subspaces of E stable under the

action of G are trivial.
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Proposition : In a 3-dimensional euclidian space, the set & of wvertices of a regular
polyhedron has enough symmetries.

Proof : The group G of isometries of 8§ contains at least two rotations of distinct axis
and angles not multiple of 7 (consider rotations stabilizing two adjacent faces). Let F'
be a G-stable subspace of E, F' # {0}. There exists a vector a € F'\ {0}. The axis of
at least one of the rotations, call it r, does not contain a. Hence a is not invariant by r,
neither anti-invariant (since dim(FE) = 3 the only rotations with an anti-invariant vector
a # 0 have angle 7). Hence a and r(a) are linearly independant and dim F' > 2. But F*
is also G-stable, hence dim F+ > 2 or F+ = {0}. Since dim E' = 3 the only possibility is
+ = {0} that is F = E, hence G is irreducible.

We can observe that if F' is a subspace of £/ and x € E then d(x, I') = ||pp(5)||. When
dim E = 3 the orthogonal of a line is a plane, thus statement of ex. 2 is a special case of the

ses A(s, D)% = (2/3) x 3 s Isl*.

Theorem 1 : Let E be a euclidian vector space and A C E a finite set. If A has enough

following theorem, which additionally gives the value >

symmetries, then for any subspace F' C E one has

> lpr@)? = S0 5 2 el

acA

Proof : For x € E and A C F a finite set, let

ua(z) = (z|a)a

acA

u 4 is clearly a self-adjoint operator)), hence has an eigenvalue A. But u4 commutes with
all isometries of A : if g is such an isometry, then

g(ua(z)) = D (x| a)g(a) = > (9(x) | gla))g(a) = D_(g(x) | b)b = ualy(x)).

acA acA beA

Therefore, G stabilizes the eigenspace Ker(uy — Aid). But G is irreducible, hence
Ker(ua — Aid) = E that is uy = Aid. @)

Now for every e € E such that ||e|| = 1, one has
Y (ela)* =D (ela)(ale) = (uale) ) = (Ae|e) = Allel|* =
acA a€cA

By denoting (e;)1<i<p an orthonormal basis of the subspace F', we obtain

ZHPF )2 = Zzez|a ZZ (e; | a)? Z)\ Adim F'.

a€A a€Ai=1 i=1lacA i=1

Actually u4 is the "dual operator of inertia” of A : if ||x|| = 1 then (ua(x) | z) is the moment of
inertia of A w.r. to the hyperplane z=.

Which can be viewed as Schur’s Lemma applied to G and u 4.
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The special case F' = E then gives

> llall? = An,

acA
which gives the value of A and completes the proof.

Th. 1 can now be easily extended to a more general result that allows to treat not only
ex. 2 but also ex. 1 as well as several other geometric situations. We just have to replace
the use of a finite set of vectors by the one of a finite family. Let I be a set (of “indices”).
We suppose given an action (g,7) — ¢ - i of the orthogonal group O(FE) on I. We say that
a family of vectors (z;);cr is admissible if g(x;) = x,4.; for every i € I and g € O(E). As
before an isometry of a set J C [ is an isometry that leaves J globalement unchanged,
and we say that J has enough symmetries if its group of isometries is irreducible. Then
we have

Theorem 2 : Let f = (z;)ics be an admissible family of vectors in a euclidian vector space
E and J C I a finite set having enough symmetries. Then for every subspace FF C E one

dim F’
Y el = g il

ieJ

has

The proof works in the same way as for th. 1 by now considering uy(z) = Z(m | 2;) x;
ic€J
instead of u(x) = Z (x| a)a.
acA
Remarks : a) Th. 2 gives back th. 1, when applied to I = E and the identity-indexed
family.

b) Ex. 2 is solved by taking

e [ = E x E and, for (a,b) € I, and g € O(E), g - (a,b) = (g(a), g(b)).

® T(qp) = b — a. The admissibility of (x(,;)) comes from g’s linearity.

o J = {(a,b) € E x E, {a,b} is an edge of the polyhedron} (hence two ordered pairs
(a,b) and (b,a) are given for each edge {a,b} such that a # b). Obviously J has enough
symmetries, since any isometry of the polyhedron sends every edge to an edge, hence is
an isometry of J.

¢) A polyhedron does not need to be regular in order to ex. 1 to hold : it just has to have
the same isometry group as the set vertices of a reqular polyhedron(l). One can obtain
such polyhedra by truncating regular polyhedra (for instance, conclusion of ex. 1 remains
true for archimedean solids'®) or, on the opposite, by having other polyhedra “grow” on

It is even enough for its isometry group to contain the isometry group of some regular polyhedron.
See e.g.

https://en.wikipedia.org/wiki/Archimedean_solid

https://mathcurve.com//polyedres/archimedien/archimedien.shtml
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faces. For instance, one can “glue” on each face of a regular polyhedron a pyramid or a
prism of given height.

d) Let’s call a skeleton any finite set J C E x E. Starting with skeletons of edges of regular
polyhedra, or given by remark c), one can easily construct many other ones satisfying the
statement of ex. 1 by noticing that the set of such skeletons is stable under translations
and disjoint unions.



