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Il this note we focus on the following exercise(1) :

Exercise 1 : In the usual 3-dimensional euclidian space, consider a regular polyhedron

and a plane P. We denote S the sum of squared lengths of the edges, and SP the sum of

squared lengths of the orthogonal projections of the edges on P. Prove that SP/S = 2/3.

Then generalize.

Before we give a solution, let’s begin with a simpler statement which will allow to

understand the main idea : sphericity of an ellispöıd of inertia can be viewed as the

geometric form of Schur’s Lemma.

Exercise 2 : In the usual 3-dimensional euclidian space, let S be the set of vertices of a

regular polyhedron, and D a line passing through the center. Show that
∑
s∈S

d(s,D)2 does

not depend on D.

A physicist would give a one-line solution by noticing that
∑

s∈S d(s,D)2 is the moment

of inertia of S with respect to D (after providing each vertex with a point mass of value

1), then arguing that the ellipsöıd of inertia is a sphere 〈〈 from reasons of symmetry 〉〉. We

will first formalize correctly the symmetry argument, that is in an intrinsic way (without

use of a coordinates system).

We will replace points by vectors by setting an origin at the center of the polyhedron.

In this note the ambiant space will be a euclidian vector space(2) E of dimension n 6= 0.

The inner product will be denoted by (· | ·). Given a vector subspace F , pF denotes the

orthogonal projection on F . Given a set A ⊂ E, we say that an isometry g is an isometry

of A if the set A is globally invariant under g. The set of isometries of A is a subgroup of

O(E).

First, the symmetry argument relies on the fact that 〈〈 no direction is particular 〉〉.

Mathematically, this leads to the following definition : we say that a set A of vectors of a

euclidian space has enough symmetries if the group of isometries of A is irreducible(3).

It turns out that this is actually the case for a regular polyhedron :

(1) Readers are invited to look for a solution, based on concepts rather than computations.
(2) Real finite-dimensional vector space endowed with an inner product.
(3) We recall that a subgroup G of GL(E) is irreducible if the only subspaces of E stable under the

action of G are trivial.
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Proposition : In a 3-dimensional euclidian space, the set S of vertices of a regular

polyhedron has enough symmetries.

Proof : The group G of isometries of S contains at least two rotations of distinct axis

and angles not multiple of π (consider rotations stabilizing two adjacent faces). Let F

be a G-stable subspace of E, F 6= {0}. There exists a vector a ∈ F \ {0}. The axis of

at least one of the rotations, call it r, does not contain a. Hence a is not invariant by r,

neither anti-invariant (since dim(E) = 3 the only rotations with an anti-invariant vector

a 6= 0 have angle π). Hence a and r(a) are linearly independant and dimF > 2. But F⊥

is also G-stable, hence dimF⊥ > 2 or F⊥ = {0}. Since dimE = 3 the only possibility is

F⊥ = {0} that is F = E, hence G is irreducible.

We can observe that if F is a subspace of E and x ∈ E then d(x, F ) = ||pF⊥(x)||. When

dimE = 3 the orthogonal of a line is a plane, thus statement of ex. 2 is a special case of the

following theorem, which additionally gives the value
∑

s∈S d(s,D)2 = (2/3)×
∑

s∈S ||s||2.

Theorem 1 : Let E be a euclidian vector space and A ⊂ E a finite set. If A has enough

symmetries, then for any subspace F ⊂ E one has∑
a∈A
||pF (a)||2 =

dimF

dimE

∑
a∈A
||a||2 .

Proof : For x ∈ E and A ⊂ E a finite set, let

uA(x) =
∑
a∈A

(x | a) a .

uA is clearly a self-adjoint operator(1), hence has an eigenvalue λ. But uA commutes with

all isometries of A : if g is such an isometry, then

g(uA(x)) =
∑
a∈A

(x | a)g(a) =
∑
a∈A

(g(x) | g(a))g(a) =
∑
b∈A

(g(x) | b)b = uA(g(x)) .

Therefore, G stabilizes the eigenspace Ker(uA − λ id). But G is irreducible, hence

Ker(uA − λ id) = E that is uA = λ id. (2)

Now for every e ∈ E such that ||e|| = 1, one has∑
a∈A

(e | a)2 =
∑
a∈A

(e | a)(a | e) = (uA(e) | e) = (λe | e) = λ||e||2 = λ .

By denoting (ei)16i6p an orthonormal basis of the subspace F , we obtain

∑
a∈A
||pF (a)||2 =

∑
a∈A

p∑
i=1

(ei | a)2 =

p∑
i=1

∑
a∈A

(ei | a)2 =

p∑
i=1

λ = λ dimF .

(1) Actually uA is the ”dual operator of inertia” of A : if ||x|| = 1 then (uA(x) | x) is the moment of

inertia of A w.r. to the hyperplane x⊥.
(2) Which can be viewed as Schur’s Lemma applied to G and uA.
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The special case F = E then gives ∑
a∈A
||a||2 = λn ,

which gives the value of λ and completes the proof.

Th. 1 can now be easily extended to a more general result that allows to treat not only

ex. 2 but also ex. 1 as well as several other geometric situations. We just have to replace

the use of a finite set of vectors by the one of a finite family. Let I be a set (of “indices”).

We suppose given an action (g, i) 7→ g · i of the orthogonal group O(E) on I. We say that

a family of vectors (xi)i∈I is admissible if g(xi) = xg·i for every i ∈ I and g ∈ O(E). As

before an isometry of a set J ⊂ I is an isometry that leaves J globalement unchanged,

and we say that J has enough symmetries if its group of isometries is irreducible. Then

we have

Theorem 2 : Let f = (xi)i∈I be an admissible family of vectors in a euclidian vector space

E and J ⊂ I a finite set having enough symmetries. Then for every subspace F ⊂ E one

has ∑
i∈J
||pF (xi)||2 =

dimF

dimE

∑
i∈J
||xi||2 .

The proof works in the same way as for th. 1 by now considering uf (x) =
∑
i∈J

(x | xi)xi

instead of uA(x) =
∑
a∈A

(x | a) a.

Remarks : a) Th. 2 gives back th. 1, when applied to I = E and the identity-indexed

family.

b) Ex. 2 is solved by taking

• I = E × E and, for (a, b) ∈ I, and g ∈ O(E), g · (a, b) = (g(a), g(b)).

• x(a,b) = b− a. The admissibility of (x(a,b)) comes from g’s linearity.

• J = {(a, b) ∈ E × E , {a, b} is an edge of the polyhedron} (hence two ordered pairs

(a, b) and (b, a) are given for each edge {a, b} such that a 6= b). Obviously J has enough

symmetries, since any isometry of the polyhedron sends every edge to an edge, hence is

an isometry of J .

c) A polyhedron does not need to be regular in order to ex. 1 to hold : it just has to have

the same isometry group as the set vertices of a regular polyhedron(1). One can obtain

such polyhedra by truncating regular polyhedra (for instance, conclusion of ex. 1 remains

true for archimedean solids(2)) or, on the opposite, by having other polyhedra “grow” on

(1) It is even enough for its isometry group to contain the isometry group of some regular polyhedron.
(2) See e.g.

https://en.wikipedia.org/wiki/Archimedean_solid

https://mathcurve.com//polyedres/archimedien/archimedien.shtml
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faces. For instance, one can “glue” on each face of a regular polyhedron a pyramid or a

prism of given height.

d) Let’s call a skeleton any finite set J ⊂ E×E. Starting with skeletons of edges of regular

polyhedra, or given by remark c), one can easily construct many other ones satisfying the

statement of ex. 1 by noticing that the set of such skeletons is stable under translations

and disjoint unions.
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