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ABSTRACT: We provide the rudiments of the theory of Galois connections (or residuation theory,

as it is sometimes called) together with many examples and applications. Galois connections occur in

profusion and are well-known to most mathematicians who deal with order theory; they seem to be

less known to topologists. However, because of their ubiquity and simplicity, they (like equivalence

relations) can be used as an e�ective research tool throughout mathematics and related areas. If one

recognizes that a Galois connection is involved in a phenomenon that may be relatively complex, then

many aspects of that phenomenon immediately become clear; and thus, the whole situation typically

becomes much easier to understand.
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INTRODUCTION

Mathematicians are familiar with the following situation: there are two \worlds" and two

transforming functions back and forth between these worlds. Moreover, after an object has

been transformed from one world to the other and then back to the �rst world, a certain

stability is reached in that further transformations produce the same results. In particular,

three transformations always yield the same result as just one (no matter where one starts).

Further, both worlds often carry natural orders. When the transforming processes respect these

orders, then we frequently have situations that are both simple and rich and that can be handled

in a very elegant way. Their simplicity is re
ected in the succinct de�nition (see De�nition

1), and their richness is manifested in the wealth of results that follow from the de�nition

(see Propositions 2{6). These pleasant situations are called Galois connections after Evariste

Galois

1

, whose work initiated the study of the connection between the world of intermediate

�elds of a �eld extension E :F and the world of subgroups of the group of automorphisms of

E that �x the sub�eld F (cf. Examples 1 and 19). Today this area is known as Galois theory.

Since the proofs of many results in this paper are either well-known or easily obtained, we

do not include them. Galois connections were originally expressed in a symmetric but contra-

variant form with transformations that reverse (rather than preserve) order. Early references

to this form are [8], [22], [44], and [45]. We use the covariant form since it is more convenient,

e.g., compositions of Galois connections are handled more easily; it allows for more natural

categorical explanations (e.g., by means of adjunctions); and it is more applicable to computer

science situations (where relative information preservation is important). For references to the

covariant form see [7], [51], [9], [32], [25], [35], [15], [42], [31], and [19].

1

Galois' main results were published fourteen years after his early death (at the age of 21 in a duel)

by Liouville in his Journal de math�ematiques pures et appliqu�ees (1846). For a translation of Galois'

original notes Memoire sur les conditions de r�esolubilit�e des �equations par radicaux , see the text

by Edwards [14].
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THE DEFINITION AND SOME OF ITS CONSEQUENCES

We formulate all our results in terms of partially ordered sets (or posets), i.e., sets equipped

with a re
exive, transitive, and antisymmetric relation. Everything can easily be generalized

to pre-ordered sets (i.e., one may drop the antisymmetry requirement) and even to pre-ordered

classes. Applications of these generalizations can be found in Examples 10, 22, and 23, and in

[10]. For a poset P = hP;�i , the order-theoretical dual hP;�i is denoted by P

op

.

Definition 1: Consider posets P = hP;�i and Q = hQ;vi . If P

�

�

��! Q and Q

�

�

��! P are

functions such that for all p 2 P and all q 2 Q

p � �

�

(q) iff �

�

(p) v q (1)

then the quadruple � = hP ; �

�

; �

�

;Qi is called a Galois connection.

We also write P

�

��

�

Q (or sometimes just h�

�

; �

�

i) for the whole Galois connection. �

�

and �

�

are called the coadjoint part and the adjoint part of � , respectively. We write P

�

for the �

�

-image of Q , and P

�

for hP

�

;�i . Similarly, Q

�

denotes the �

�

-image of P , and

Q

�

stands for hQ

�

;vi . The elements of P

�

(resp. Q

�

) are called �-closed (resp. �-open).

We say that � is a core
ection

2

(resp. re
ection) if �

�

(resp. �

�

) is a one-to-one function,

and an interior (resp. closure) connection if �

�

(resp. �

�

) is an inclusion. � is called an

isomorphism if both �

�

and �

�

are one-to-one, and hence mutually inverse bijections (see

Proposition 3(5) and (9) below). We call a function between posets (co)adjoint iff it is the

(co)adjoint part of a Galois connection.

Definition 2: (1) A self-map f of a poset hP;�i is said to be increasing (resp. decreas-

ing) if p � f (p) (resp. f (p) � p) for each p 2 P . A closure (resp. interior) operation

on hP;�i is an order-preserving, idempotent, and increasing (resp. decreasing) self-map.

(2) A closure system of hP;�i is a subset Q of P such that for each p 2 P there is a

smallest q 2 Q with p � q , called the closure of p and denoted by p

�

. The order-

theoretically dual notions are interior system and interior p

�

of p . By a closure

system on a set X , we mean a closure system of the power set lattice P (X) =

hP (X) ;�i .

Closure connections � bijectively correspond to closure operations: assign to � the com-

posite �

�

�
�

�

(cf. Propositions 3(4) and 6). Mapping each closure operation on a poset to its

image yields a bijective correspondence with closure systems of the poset.

Proposition 1: Let Q be a closure (interior) system of P .

(1) A subset A of Q has an in�mum (supremum) in Q = hQ;�i iff it has an in�mum

(supremum) in P , and whenever either exists, they are equal.

2

In Computer Science core
ections are frequently called embedding-projection pairs.
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(2) If B � Q has a supremum (an in�mum) b in P then b

�

(b

�

) is the supremum (in�-

mum) of B in Q .

(3) If P is a complete lattice, then the closure (interior) systems of P are those subsets that

are closed under in�ma (suprema). Hence, under the induced order, closure (interior)

systems of P are also complete lattices. They need not, however, be sublattices.

Galois connections behave well under composition and order-inversion.

Proposition 2: If P

�

��

�

Q and Q

�

��

�

R are Galois connections, so are P

�
�
�

����

�

R , where

�
�
� = h�

�

�
�

�

; �

�

�
�

�

i , and hQ;wi = Q

op
�

op

����

�

P

op

= hP;�i , where �

op

= h�

�

; �

�

i . In

particular, the �-open elements of Q are precisely the �

op

-closed ones.

Proposition 3: For any Galois connection P

�

��

�

Q

(1) both �

�

and �

�

preserve order.

(2) �

�

and �

�

are mutual quasi-inverses, i.e., �

�

�
�

�

�
�

�

= �

�

and �

�

�
�

�

�
�

�

= �

�

.

(3) p 2 P

�

iff p is a �xed point of �

�

�
�

�

, and q 2 Q

�

iff q is a �xed point of �

�

�
�

�

.

(4) �

�

�
�

�

is a closure operation on P that induces a closure connection P

�̂

��

�

P

�

;

similarly, �

�

�
�

�

is an interior operation on Q that induces an interior connection

Q

�

��

��

�

Q . Hence P

�

is a closure system of P , and Q

�

is an interior system of Q , so

the results of Proposition 1 apply.

(5) P

�

and Q

�

are isomorphic posets; the restrictions of �

�

and �

�

to these posets yield

an isomorphism P

�

~�

��

�

Q

�

; and � canonically factors as the closure connection �̂

followed by this isomorphism ~� followed by the interior connection �� ; namely

P

�

��

�

Q = P

�̂

��

�

P

�

~�

��

�

Q

�

��

��

�

Q (2)

(6) the functions �

�

and �

�

uniquely determine each other; in fact

�

�

(p) = inf (f q 2 Q j p � �

�

(q) g) and �

�

(q) = sup (f p 2 P j �

�

(p) v q g)

This justi�es calling �

�

the coadjoint (or lower adjoint) of �

�

and calling �

�

the

adjoint (or upper adjoint) of �

�

.

(7) for each p 2 P

�

its �

�

-inverse image has �

�

(p) as the smallest element; similarly, the

�

�

-inverse image of each q 2 Q

�

has �

�

(q) as the largest element.

(8) �

�

preserves joins (i.e., suprema), and �

�

preserves meets (i.e., in�ma).

(9) � is a re
ection (i.e., �

�

is one-to-one) iff �

�

is surjective iff �

�

�
�

�

= id

Q

; and � is

a core
ection (i.e., �

�

is one-to-one) iff �

�

is surjective iff �

�

�
�

�

= id

P

.

Now we see that Galois connections can be characterized by other simple conditions that

sometimes are easier to verify than the de�nition above. Recall that "p = f x 2 P j p � x g is

the principal �lter generated by p 2 P , and #q = f y 2 Q j y v q g is the principal ideal

generated by q 2 Q . We write P (Y )

h

 

���! P (X) for the inverse image function of X

h

�! Y .
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Proposition 4: Let P = hP;�i and Q = hQ;vi be posets, and let P

f

�! Q and Q

g

�! P be

functions.

(1) The following are equivalent:

(a) hP ; f; g;Qi is a Galois connection.

(b) f and g preserve order, g
�
f is increasing, and f

�
g is decreasing.

(c) f preserves order, and for each q 2 Q the largest element of f

 

(#q) is g (q).

(d) g preserves order, and for each p 2 P the smallest element of g

 

("p) is f (p).

(2) f is coadjoint iff f is residuated, i.e., iff f

 

preserves principal ideals. If P is

complete, this condition is equivalent to the preservation of arbitrary suprema by f .

(3) g is adjoint iff g is residual, i.e., iff g

 

preserves principal �lters. If Q is complete,

this condition is equivalent to the preservation of arbitrary in�ma by g .

Proposition 5: By assigning to each coadjoint self-map of a poset P its adjoint, one obtains

a dual isomorphism (reversing both the composition and the order) between the monoid of

all coadjoint self-maps on P and the monoid of all adjoint self-maps on P , both ordered

pointwise. In particular, this isomorphism preserves idempotency. Moreover, coadjoints that

are increasing (decreasing) correspond to adjoints that are decreasing (increasing).

Finally, let us have a look at the relativization of Galois connections.

Proposition 6: Let P be a closure system of a poset X = hX;�i with closure connection

X




��

�

P = hP;�i , and let Q be an interior system of a poset Y = hY;vi with interior

connection Q = hQ;vi

�

��

�

Y . Then every Galois connection X

�

��

�

Y with �

�

(x) 2 Q for

each x 2 X and �

�

(y) 2 P for each y 2 Y induces a Galois connection P

�

��

�

Q such that

the following diagram commutes

X

�

�����������������

�

Y

�̂

�

�

�

�

�

�

�

�

�

�

�

@

@

�


 �

�

�

�

P

�

���

�

Q

�

�

�

�̂ ��

�

@

@

�

�

�

�

�

�

�

�

�

�

�

��

X

�

= P

�

�����������������

�

~�=~�

Y

�

= Q

�

(3)

In particular, � and � induce the same isomorphism (and the lower trapezoid collapses iff �

is already an isomorphism).

Conversely, under the above hypothesis every Galois connection P

�

��

�

Q is induced by a

unique Galois connection X

�

��

�

Y , namely the composite X




��

�

P

�

��

�

Q

�

��

�

Y . Hence

the set of all Galois connections from P to Q with the pointwise order (on the coadjoints) is

isomorphic to the poset of all Galois connections from X to Y that restrict to ones from P

to Q .
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EXAMPLES OF GALOIS CONNECTIONS

In each example of this section � = hP ; �

�

; �

�

;Qi is a Galois connection. Many natural

examples where P and Q are power sets are given in Sections 4 and 5.

Example 1: (cf. [44], [3]) Let E : F be a �eld extension, and P be the set of intermediate

�elds between F and E ordered by inclusion. Let G = GhE; F i be the group of all �eld

automorphisms of E that �x F pointwise, and let Q be the set of all subgroups of G ordered

by reverse inclusion. De�ne P

�

�

��! Q and Q

�

�

��! P by

�

�

(L) = f g 2 G j g �xes L pointwise g

�

�

(H) = f a 2 E j every h 2 H �xes a g

This is the Galois connection that arises from Galois theory in its modern form, as presented,

e.g., by Artin [3]. (Of course, neither modern algebraic notions such as �eld or automorphism

group nor order-theoretical aspects occur explicitly in Galois' original work.) By known the-

orems of classical algebra, every �nite subgroup H of G is �

op

-closed, i.e., �

�

�

�

(H) = H ,

and �

�

(H) :F is a �nite �eld extension with dimension card (H). Conversely, if E :F is a

�nite extension, then card (G) is bounded by dim (E : F ), and hence � is a re
ection. If in

addition E :F is a Galois extension, i.e., if F is �-closed, then the fundamental theorem of

Galois theory states that � is an isomorphism; in this case every intermediate �eld between

F and E is �-closed.

Example 2: (cf. [57], [27]) For a function X

h

�! Y between two sets, let P and Q be the

power sets of X and Y , respectively, both ordered by inclusion. De�ne the direct image

function P

h

!

���! Q and the inverse image function Q

h

 

���! P by

h

!

(U) = f y 2 Y j 9

x2U

with h (x) = y g ; the direct image of U under h,

h

 

(V ) = f x 2 X j 9

y2V

with h (x) = y g ; the inverse image of V under h.

Since h

!

preserves unions and P is a complete lattice, by Proposition 4(2) h

!

is the

coadjoint part �

�

of some Galois connection � . The corresponding adjoint �

�

turns out to

be h

 

, which by Proposition 3(8) must preserve intersections. The elements of P

�

are called

h-saturated. Notice that �

�

also preserves unions and hence is a coadjoint.

If h is only a partial function X �* Y , i.e., h is de�ned on only a subset X

0

� X ,

then h

!

still is coadjoint. Its adjoint �

�

then maps V � Y to the disjoint union of h

 

(V )

and X �X

0

. In particular, if X

0

6= X , then �

�

does not preserve the empty join (hence by

Proposition 3(8) it cannot be coadjoint), and the inverse image function h

 

does not preserve

the empty meet (hence it is not adjoint).

Example 3: (cf. [27]) Even for a partial function X

h

�* Y the inverse image function h

 

preserves unions, and hence by Proposition 4(2) is coadjoint. Let P and Q be the power sets

of Y and X , respectively, both ordered by inclusion. (Note that the roles of X and Y are

reversed as compared to Example 2.) De�ne P

�

�

��! Q to be h

 

. According to Proposition

5



3(6) the corresponding adjoint �

�

must map U � X to the union of all those subsets of Y

whose inverse image under h is contained in U . It turns out that �

�

(U) = Y � h

!

(X � U).

Notice that h

!

preserves unions but need not preserve intersections, while the adjoint to

h

 

we just described preserves intersections but need not preserve unions.

Example 4: (cf. [16]) Let h be a continuous map between topological spaces or, more gener-

ally, between closure spaces hX;X i and hY;Y i (i.e., X and Y are closure systems on X and

Y , respectively, and h

 

maps Y into X )

3

. The modi�ed direct image function X

h

�

!

���! Y

maps C 2 X to (h

!

(C))

�

. Let h

 

�

denote the restricted inverse image function from Y

to X . Then � = hh

�

!

; h

 

�

i is a Galois connection from hX ;�i to hY ;�i . In particular,

h

�

!

preserves joins (but not necessarily unions), and h

 

�

preserves meets (i.e., intersections).

X

k

�! Y is continuous from hX;X i to hY;Y i iff there exists a coadjoint (= join-preserving)

X

K

��! Y such that K
�
�

X

= �

Y

�
k , where the \completion maps" X

�

X

��! X and Y

�

Y

��! Y

send each point to its closure. Clearly, K then must agree with k

�

!

. This construction is fun-

damental for the representation of topological spaces by complete lattices and vice versa, and

also for certain aspects in the theory of hyperspaces (see, e.g., [25] and [18]).

Example 5: Let P be the set of all open sets and Q that of all closed sets of a topological

space with underlying set X , both ordered by inclusion. The topological closure operation

( )

�

gives rise to a closure connection P (X)




��

�

Q , and the topological interior operation

( )

�

induces an interior connection P

�

��

�

P (X). Their composite 

�
� is a Galois connection

P

�

��

�

Q with �

�

(U) = U

�

and �

�

(V ) = V

�

. The �-closed members of P are the regular

open (!) sets U = U

��

, and the �-open members of Q are the regular closed (!) sets

V = V

��

. Thus ( )

�

and ( )

�

induce an isomorphism between the lattice of regular open sets

and that of regular closed sets.

Composing � with the isomorphism Q

( )

0

���

�

P

op

given by complementation yields a Galois

connection P

�

0

���

�

P

op

with �

0

�

(U) = �

0�

(U) = U

�0

= U

0�

. Hence the lattice P

�

= P

�

0

of

regular open sets is self-dual. In fact, these lattices are always Boolean (see Example 18).

Notice that the operation of taking the complement of the topological closure does not

induce a Galois connection from P (X) to P (X)

op

(e.g., in the usual topology on the reals

f0g

�0�0

= ; 6� f0g). Nevertheless the Galois connection �

0

can be used to prove the standard

result that there are at most 14 sets that result from the application of complement and closure

to any subset U � X (since U

�0

is open, U

�0�0

= �

0

�

(U) is a �xed point of �

0

�

�
�

0�

).

As can be seen from the following example, a similar phenomenon occurs with the compact-

ness operator introduced in [13].

3

If T is a topology on X , and X consists of the T -closed sets, then hX;X i is a closure space.
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Example 6: Let P be the set of all topologies on X ordered by inclusion, and let Q be P

op

.

Consider the operator � that maps any topology T on X to the topology obtained by using

the T -compact sets as a base for the closed sets. Even though � preserves order from P to

Q and vice versa (because � reverses inclusion), for every in�nite set the pair h�; �i is not

a Galois connection (while for �nite X it trivially is one). For example, if � is any ordinal,

and T is the Alexandro� topology of all upper sets (cf. Example 9), then every subset of � is

compact, and consequently, �

2

(T ) is the co�nite topology on � . For in�nite � , this topology

is neither coarser nor �ner than T . However, in all cases h�; �i induces a Galois connection

between the �-images of Q and P . This follows immediately from the fact that � preserves

order and that � (T ) � �

3

(T ) for any topology T (cf. [13], Theorem II (8) and (9)). Thus

Proposition 3(2) gives an instant proof via Galois connections of Theorem II (10) of [13] that

�

2

= �

4

.

Example 7: Let P be the set of all topologies on Y , and let Q be the set of all topologies

on X , both ordered by inclusion. Given a function X

h

�! Y , de�ne �

�

and �

�

by

�

�

(S ) = f h

 

(V ) j V 2 S g (S 2 P)

�

�

(T ) = fV � Y j h

 

(V ) 2 T g (T 2 Q)

Observing that h is a continuous function from hX;T i to hY;S i iff �

�

(S ) � T iff S �

�

�

(T ), we see that �

�

and �

�

are in fact the coadjoint part and the adjoint part of a Galois

connection P

�

��

�

Q . Hence �

�

(S ) is the coarsest topology T on X that makes h continuous

from hX;T i to hY;S i (called the initial topology with respect to h and S ), and �

�

(T ) is

the �nest topology S on Y that makes h continuous from hX;T i to hY;S i (called the �nal

topology with respect to h and T ).

The �-closure of a topology S on Y is a new topology that consists of all those sets B � Y

with h

 

(B) = h

 

(V ) for some V 2 S . On the other hand, the interior operation �

�

�
�

�

maps a topology T on X to a new topology that consists of all those U 2 T with U = h

 

(B)

for some B � Y .)

A topology T on X is �-open iff (each member of) T is h-saturated (see Example

2), and a topology S on Y is �-closed iff it is h-discrete, i.e., h

!

(X) and all subsets of

Y � h

!

(X) are S -open. By Proposition 3(5) the lattice of h-saturated topologies on X is

isomorphic to the lattice of h-discrete topologies on Y . If h is one-to-one then every topology

on X is h-saturated, and if h is onto then every topology on Y is h-discrete.

Example 8: (cf. [45]) Let B (X) and F (X) be the sets of all bases (for topologies) and of

all �lters on X , respectively. Both B (X) and F (X) are subsets of the double power set of

X , where B 2 B (X) iff U; V 2 B and x 2 U \ V imply the existence of some W 2 B with

x 2 W � U \ V , and F 2 F (X) iff X 2 F and F is closed under supersets and binary

intersections. (To make F (X) into a complete lattice, we include the power set of X as a

�lter.) De�ne a Galois connection � from P = hB (X) ;�i to Q = hF (X) ;�i

X

, the set of

all functions X �! F (X) with the pointwise order induced by the inclusion on F (X), by

�

�

(B) (x) = fV � X j 9

B2B

with x 2 B � V g for all x 2 X

�

�

(u) = fU � X j 8

x2U

U 2 u (x) g

7



The �-closed bases are precisely the topologies on X ; in fact, �

�

�

�

(B) is the topology gener-

ated by the base B . The �-open �lter functions X

u

�! F (X) are the topological neighborhood

functions, i.e., for each V 2 u (x) there exists a subset U � V with x 2 U and U 2 u (y) for

every y 2 U . Thus we obtain the classical bijective correspondence between topologies and

functions that assign neighborhood �lters to points.

Example 9: For a topology T on X de�ne a pre-order �

T

on X by

x �

T

y () x 2 U implies y 2 U for all U 2 T (4)

This condition is equivalent to fxg

�

� fyg

�

. The pre-order �

T

is called the specialization

order on X with respect to T . It is a partial order iff T is a T

0

-topology.

For a pre-ordered set hX;�i each U � X generates an upper set "U =

S

f "x j x 2 U g .

Among the topologies with specialization � there is a �nest one, the Alexandro� topology

A

�

, that consists of all upper sets U = "U � X (cf. [1]), and a coarsest one, the upper

topology U

�

, that is generated by the complements of the principal ideals #x , for x 2 X (cf.

[25]). The closed sets with respect to A

�

are precisely the open sets with respect to A

�

, i.e.,

the lower sets #V =

S

f #x j x 2 V g .

Let P be the set of all topologies on X ordered by inclusion, and let Q be the set of all

pre-orders on X ordered by reverse inclusion. One obtains a Galois connection P

�

��

�

Q via

�

�

(T ) = �

T

and �

�

(�) = A

�

Here � is a re
ection, i.e., every pre-order is �-open, and � is an isomorphism iff X is �nite.

The �-closed topologies are precisely the Alexandro� topologies; the corresponding lattice is

isomorphic to the lattice of all pre-orders on X ordered by reverse inclusion.

Among the topologies T with specialization order � those with the property that every

�-directed set with a least upper bound in U 2 T is eventually in U are called order-

consistent; the �nest such topology is the Scott topology S

�

. It consists of all those

U � X that satisfy x 2 U () U \D 6= ; for every �-directed D � X with a least upper

bound x (cf. [25] and [19]). (Note that \(" above implies U = "U .) In fact, all topologies

between U

�

and S

�

are order-consistent. Hence we may restrict �

�

to the subposet P

0

of

order-consistent topologies on X to obtain a new Galois connection �

0

with �

0�

(�) = S

�

.

Now the �

0

-closed elements of P

0

are precisely the Scott topologies (cf. [41]).

Example 10: Let P be the set of all equivalence relations on a set X , ordered by inclusion,

and let Q be the class of all functions with domain X , ordered by (X

f

�! Y ) v (X

h

�! Z) iff

there exists some function Y

g

�! Z that satis�es g
�
f = h . De�ne �

�

and �

�

by setting

�

�

(R) = (X

p

R

��! X=R) (the canonical surjection)

�

�

(f) = ker (f) = f hx; yi 2 X �X j f (x) = f (y) g

This is not a Galois connection as de�ned in De�nition 1 for two reasons:

� Q is a proper class rather than a set;
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� the order on Q is only a pre-order, rather than a partial order, i.e., it lacks antisymmetry.

However, neither of these problems creates a serious roadblock. Galois connections can be

de�ned for both proper classes and pre-orders without any changes; however some of the

consequences and notions in Propositions 3 { 6 require slight modi�cations. For example,

rather than �

�

= �

�

�
�

�

�
�

�

in Proposition 3(2) we have �

�

�

=

�

�

�
�

�

�
�

�

in the sense that

�

�

v �

�

�
�

�

�
�

�

v �

�

. Also an element p 2 P is �-closed iff p � �

�

�

�

(p) � p , and an

element q 2 Q is �-open iff q v �

�

�

�

(q) v q . Etc.

In this example the �-open functions with domain X are precisely the surjective ones, and

all equivalence relations on X are �-closed (so � is a core
ection). This makes precise the

usual interplay between equivalence relations and surjective functions.

We conclude our list of examples with two related constructions that establish interesting

links between order theory, topology, algebra and computer science.

Example 11: (cf. [58], [17], [20]) Let Z denote anR-invariant extension, that is, a function

assigning to each poset P a certain collection Z (P) of lower sets including all principal

ideals such that every residuated map P

f

�! Q is Z -continuous, i.e., V 2 Z (Q) implies

f

 

(V ) 2 Z (P). Equivalently, this means that every residual map Q

g

�! P is Z -quasi-

closed, i.e., U 2 Z (P) implies #g

!

(U) 2 Z (Q). Possible choices for Z are: principal

ideals, arbitrary lower sets, �nitely generated lower sets, directed lower sets, lower cuts (see

Example 25), ideals, Scott-closed sets (see Example 9), etc.

An element p of a Z -complete poset P (where each Z 2 Z (P) has a join = supremum)

is called Z -compact or Z -prime if it belongs to every Z 2 Z (P) whose join dominates p ,

and P is called Z -compactly generated if every element of P is a join of Z -compact ele-

ments. By a Z -lattice we mean a Z -compactly generated complete lattice. Of fundamental

importance for various topological representation theories are the following two facts:

(A) The Z -lattices are, up to isomorphism, precisely the closure systems that are

closed under Z -unions.

This generalizes the known facts that the compactly generated complete lattices are represented

by algebraic closure systems, the _-primely generated complete lattices are represented by

lattices of closed sets in topological spaces, etc.

(B) A coadjoint map between Z -compactly generated posets preserves Z -compact-

ness iff its adjoint preserves Z -joins.

By de�nition, a map P

f

�! Q preserves Z -compactness iff it maps Z -compact elements of

P to Z -compact elements of Q , and a map Q

g

�! P preserves Z -joins iff g(

W

Z) =

W

g

!

Z

for all Z 2 Z (Q).

By combining (A) with the hyperspace construction of Example 4, one obtains an equiva-

lence between the category of Z -sober closure spaces (i.e., T

0

closure spaces where the point

closures are precisely the Z -compact closed sets) with continuous maps, and the category of

Z -lattices with maps preserving joins and Z -compactness. By (B) these categories are dual

to the category of Z -lattices and maps preserving meets and Z -joins.

9



In case Z selects the �nitely generated lower sets, we arrive at the known duality between

sober spaces and (dual) spatial frames (see, e.g., [25]). On the other hand, for the special

selection of all directed lower sets (\ideals" in the sense of [25]), these considerations reduce

to known dualities between algebraic lattices and (compact) semilattices, etc. For reasons of

limited space, we refer the reader to the literature, especially to Hofmann and Stralka ([32]);

throughout that study on compact topological semilattices, a consistent theme is the continued

application of Galois connections (see also Example 12).

Now suppose that two R-invariant extensions Z and Z

0

are given.

Let Z SZ

0

be the category whose objects are the Z -sober closure spaces with a base of

Z

0

-compact open sets, and whose morphisms are maps such that inverse images of Z

0

-compact

open sets are again Z

0

-compact and open (in particular, such maps are continuous).

Let Z CZ

0

be the category whose objects are those Z -lattices whose duals are Z

0

-lattices,

and whose morphisms are maps that preserve arbitrary joins, Z -compactness, and Z

0

-meets.

Because of (B) it is straightforward to show that order-dualizing the objects and passing to

adjoint morphisms yields a dual isomorphism between the categories Z CZ

0

and Z

0

CZ , and

this is the root for many other dualities. Indeed, the aforementioned hyperspace construction

leads to an equivalence between Z SZ

0

and Z CZ

0

as well as to one between Z

0

SZ and

Z

0

CZ . By composing these with the duality above, one arrives at a nice \symmetric" duality

between the categories Z SZ

0

and Z

0

SZ . Now, special choices of Z and Z

0

and suitable

restrictions provide a multitude of \classical" dualities, encompassing the dualities between

� sober spaces and spatial frames [25], [35]

� sober spaces with compact-open base and distributive semilattices [28]

� Boolean spaces ( Stone spaces) and Boolean lattices [54], [35]

� semilattices and algebraic lattices [24], [32]

� Alexandro� spaces ( posets) and completely distributive algebraic lattices [16]

and many others, including Lawson's duality for continuous, respectively, algebraic posets

(see [38] and Example 12 below). For details consult [20].

Example 12: (cf. [43], [5], [55]) A vital theme of modern order theory is continuous posets,

and more generally, Z -continuous posets (where Z denotes, as in the previous example,

an R-invariant extension). Such posets may be characterized most conveniently in terms of

Galois connections: a poset P = hP;�i is Z -complete iff the principal ideal embedding of

P into Z (P) given by x 7! #x has a coadjoint (namely the join map

W

from Z (P) to P ).

A Z -complete poset P is Z -continuous iff its join map

W

is also adjoint (to the Z -below

map x 7! #

Z

x =

T

fZ 2 Z (P) j x �

W

Z g). This approach makes many considerations on

Z -continuous posets short, elegant, and transparent.

A \good" class of morphisms is certainly formed by coadjoint maps that preserve the Z -

below relation (i.e., that satisfy f

!

(#

Z

x) � #

Z

f (x)); via Galois connections, the corre-

sponding category is dually isomorphic to the category of Z -continuous posets and adjoint

maps preserving Z -joins. Full subcategories are formed by the Z -algebraic posets, i.e.,

10



Z -continuous and Z -compactly generated posets (cf. Example 11). Since an element p is Z -

compact iff p 2 #

Z

p , preservation of the Z -below relation here is tantamount to preservation

of Z -compactness.

If Z selects all lower sets, i.e., Z hP;�i is the dual Alexandro� topology A

�

(cf. Example

9), then the Z -continuous posets are just the completely distributive lattices (cf. [48]).

Hence a complete lattice P is completely distributive iff the join map

W

from A

�

to P is a

complete homomorphism.

An easy Galois argument (explained in greater detail in Example 31) leads to the following

result on so-called Z -join ideals, i.e., �xed points of the operator

�

Z

: Y 7! #

�

_

Z j Z 2 Z (P) , Z � #Y

	

� For any Z -continuous poset with idempotent Z -below relation, the closure system

of Z -join ideals is completely distributive, and �

Z

is the corresponding closure

operator.

For many R-invariant extensions occurring in practice (e.g., for each of the selections mentioned

at the beginning of Example 11, and more generally, for each Z such that

S

Y 2 Z (P)

whenever Y 2 Z hZ (P) ;�i), every Z -continuous poset has an idempotent Z -below relation

(see [5]). For example, if Z selects the directed lower sets, then \Z -continuous" means

\continuous", \Z -algebraic" means \algebraic", and the Z -join ideals are just the Scott-

closed sets. By the previous remarks, they form a completely distributive lattice for any

continuous poset (cf. [38] and [25]).

RESIDUATED SEMIGROUPS

In this section we brie
y discuss a general concept that accounts for a large class of interesting

Galois connections.

Definition 3: A partially ordered semigroup hP;�; �i , i.e., a poset P = hP;�i equipped

with an order-preserving associative multiplication P �P

�

�! P , is called residuated if all

left translations P

r��

���! P and all right translations P

��s

���! P are residuated, i.e., have

adjoints P

rn�

���! P and P

�=s

���! P , respectively; this means

s � rnt () r � s � t () r � t=s

Notice that, in addition to the Galois connections hr � �; rn�i and h� � s;�=si from P

to P given by the left and right translations above, for every t 2 P the pair h�nt; t=�i is a

Galois connection from P to P

op

.

By Proposition 4(2) a complete partially ordered semigroup hP ; �i is residuated iff the

multiplication distributes over arbitrary suprema, i.e., for all r 2 P and S � P

r �

_

S =

_

f r � s j s 2 S g and

_

S � r =

_

f s � r j s 2 S g

Nowadays, complete residuated semigroups are referred to as quantales. For a comprehen-

sive treatise on this modern branch of order theory, see the text by Rosenthal [50]. A classical

source on residuation theory is the monograph by Blyth and Janowitz [9].
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Example 13: (cf. [18]) Let hA; �i be a semigroup, and let X be a closure system on A

that makes the left and right translations continuous. The complete lattice hX ;�i becomes a

quantale when equipped with the multiplication R�S = f r �s j r 2 R; s 2 S g

�

. The quantale

hX ;�;�i may be regarded as a \residuated completion" of the \generalized semitopological

semigroup" hA;X ; �i . By Example 4, every continuous semigroup homomorphism lifts to a

residuated semigroup homomorphism between the associated completions. These facts provide

a broad spectrum of useful constructions for order-theoretical and topological completions.

Among these, we only mention two speci�c examples: the MacNeille completion of a residuated

semigroup, and the Vietoris hyperspace of a continuous semilattice. For more details see [21]

and [18].

Example 14: In ring theory, the closure systems of additive subgroups, of left ideals, of

right ideals, and of two-sided ideals of a given ring A each play a major role. Endowed

with the multiplication RS = f

P

n

i=0

r

i

s

i

j r

i

2 R; s

i

2 S; n 2 ! g , each of these closure

systems becomes a quantale. However, only in the case of two-sided ideals are there \natural"

expressions for both the left and right residual maps given by

RnT = f a 2 A j 8

r2R

ra 2 T g and T=S = f a 2 A j 8

s2S

as 2 T g

More topologically 
avored variants of these examples are the quantales of all left, right, or

two-sided closed ideals, respectively, of a C

?

-algebra.

Example 15: By a partial semigroup A , we mean a set A equipped with a partial binary

operation � such that whenever r � s and s � t are de�ned, then so are (r � s) � t and s � (r � t) ,

and these products are equal. Any such A induces a quantale hP (A) ;
i via

R
 S = f r � s j r 2 R; s 2 S; and r � s is de�ned g

RnT = f a 2 A j 8

r2R

if r � a is de�ned then r � a 2 T g

T=S = f a 2 A j 8

s2S

if a � s is de�ned then a � s 2 T g

Important subquantales of hP (A) ;
i are the Alexandro� topologies of all left, right or two-

sided ideals of A , respectively.

Example 16: Let � be a set (often called an alphabet), and let �

?

be the free monoid of

�-words with concatenation as the operation. Subsets of �

?

are called languages over �.

By the previous remarks the languages form a quantale, and consequently every language L

gives rise to three Galois connections hL
�; Ln�i , h� 
 L;�=Li , and h�nL; L=�i .

Example 17: De�ne a partial semigroup operation � on A�A by setting ha; bi � hd; ci= ha; ci

iff b = d . Then for relations R; S � A�A the product R
 S is the usual composite relation

f ha; ci j 9

b

with ha; bi 2 R and hb; ci 2 S g . So hP (A �A) ;
i is a quantale. The next two

sections deal explicitly with Galois connections induced by relations.
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Example 18: (cf. [26], [8], [23], [49], [28], [37]) Let p be a �xed element of a meet-semilattice

P = hP;�i . We say P is p-pseudocomplemented if every element r 2 P has a p-pseudo-

complement r

p

(also denoted by r �p , r!p , rnp , p=r , p : r , etc.) that satis�es r^s � p iff

s � r

p

. Since ^ is symmetric, �

�

(r) = �

�

(r) = r

p

de�nes a Galois connection P

�

��

�

P

op

.

Hence the p-skeleton

P

�

= P

p

= f r

p

j r 2 P g = f r 2 P j r = r

pp

g

is a closure system of P ; in particular, P

p

= hP

p

;�i is a meet-subsemilattice of P , and if P

is complete, so is P

p

. The meet-semilattice P is called Brouwerian or relatively pseudo-

complemented iff it is p-pseudocomplemented for each p 2 P . This is equivalent to saying

that each of the unary meet operations P

r^�

���! P is residuated (with adjoint P

r��

���! P ).

Hence the Brouwerian semilattices are those residuated semigroups whose multiplication is the

binary meet. Brouwerian lattices with least element are also known asHeyting algebras, and

complete Heyting algebras are known as frames or locales. Since residuated maps preserve

joins, every Brouwerian lattice is distributive, and the locales are precisely those complete

lattices which satisfy the in�nite distributive law

r ^

_

S =

_

f r ^ s j s 2 Sg

Lattices of this type play a considerable role in disciplines as diverse as congruence theory,

(intuitionistic) logic, and topology. In fact, residuation yields a duality between the category

of frames (with maps preserving arbitrary joins and �nite meets) and the category of locales

(with maps adjoint to frame morphisms), which in turn contains (an isomorphic copy of) the

category of topological spaces (cf. Example 11). As was pointed out by Isbell [34], Banaschewski

and Pultr [4], Johnstone [36] and others, this aspect is of fundamental importance for a general

theory of \spaces without points".

Moreover, Galois connections of the present type produce Boolean lattices in abundance:

� Any p-pseudocomplemented meet-semilattice P has a p-skeleton P

p

that is a

Boolean lattice with least element p and greatest element p

p

.

To verify this claim, three simple observations su�ce: for r; s 2 P

p

(1) (r

p

^ s

p

)

p

is the join in P

p

;

(2) r

p

is the complement of r in P

p

,

(3) (r ^ s

p

)

p

is the relative pseudocomplement in P

p

(in particular, P

p

is distributive).

In case p is the least element ? , the above notions reduce to pseudocomplement, pseudo-

complemented (semi-) lattice, and skeleton, respectively.

Since every topology T is a locale with pseudocomplements U

?

= U

�0

, one immediately

concludes that the regular open sets form a Boolean lattice, namely the skeleton of T (cf.

Example 5). Compare this concise argument with, e.g., the treatment in [29].
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POLARITIES

All Galois connections between power sets are induced by relations between the underlying sets

in particularly simple ways. For sets A and B we �rst study the contravariant case of Galois

connections from P (A) to P (B)

op

, so-called polarities between P (A) and P (B) . (Recall,

however, that many authors use the term \Galois connection" exclusively in the contravariant

sense.) Since the �-open subsets of such a Galois connection � form a closure system on B ,

the term \�

op

-closed" is preferable in this context.

Proposition 7: (cf. [8], [44]) (1) Any relation R � A � B induces a Galois connection

P (A)

R

+

+

����

�

P (B)

op

. The components of R

+

+

= hR

+

; R

+

i are de�ned by

R

+

(U) := f b 2 B j 8

a2U

ha; bi 2 R g for U � A

R

+

(V ) := f a 2 A j 8

b2V

ha; bi 2 R g for V � B

(2) If for a polarity P (A)

�

��

�

P (B)

op

the relation j�j � A � B is de�ned by ha; bi 2 j�j

iff b 2 �

�

(fag) (or, equivalently, a 2 �

�

(fbg)), then � = j�j

+

+

.

(3) Every relation R � A � B satis�es jR

+

+

j = R . Hence every polarity � between P (A)

and P (B) comes from a unique relation, namely R = j�j , and vice versa.

(4) R

+

+

:= (R

+

+

)

op

= hR

+

; R

+

i is the polarity between P (B) and P (A) induced by the

opposite relation R

op

= f hb; ai 2 B � A j ha; bi 2 R g .

The previous considerations admit a natural generalization. Let P be a closure system on

A , and let Q be a closure system on B . By a polarity between P and Q we mean a Galois

connection between the complete lattices hP;�i and hQ;�i . Since every complete lattice is

isomorphic to the closure system of all principal ideals, and is dually isomorphic to the closure

system of all principal �lters, essentially all Galois connections between complete lattices may

be regarded as certain polarities. The polarities between P and Q form a complete lattice with

respect to the pointwise ordering, called the tensor product of P and Q (see, e.g., [52]).

By Propositions 6 and 7, every polarity between P and Q is induced by a unique relation

R � A�B . Hence the interior system of all relations R � A�B with R

+!

(P (A)) � Q and

R

+

!

(P (B)) � P is dually isomorphic to the tensor product of P and Q .

Example 19: The classical Galois connection of Example 1 is induced by the relation R =

f ha; gi 2 E � G j g (a) = a g . The R

+

+

-closed subsets of E are precisely the �-closed

intermediate �elds of E : F , and the R

+

+

-closed subsets of G are precisely the �

op

-closed

subgroups of G , cf. Proposition 6.

Example 20: (cf. [15]) For A = P (X) and B = X�X , the Alexandro� re
ection of Example

9 is induced by the relation R = f hU; hx; yii 2 A � B j x 2 U or y 2 U g . For U � P (X)

the specialization order R

+

(U ) =�

U

is de�ned in analogy to formula (4). The adjoint

R

+

maps a relation S on X to the Alexandro� topology A

S

of all right S -closed sets, i.e.,

U 2 R

+

(S) = A

S

iff x 2 U and hx; yi 2 S together imply y 2 U . Thus R

+

R

+

(U ) is the

Alexandro� topology generated by U , while R

+

R

+

(S) is the re
exive transitive closure of S .
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Hence the R

+

+

-closed subsets of A are precisely the Alexandro� topologies on X , and the

R

+

+

-closed subsets of B are precisely the pre-orders on X .

Example 21: (cf. [53]) For the set F (X) of all �lters on X consider the relation R �

P (X) � (X � F (X)) given by hU; hx; F ii 2 R () x =2 U or U 2 F . The R

+

+

-closed

subsets of A are precisely the topologies on X . The R

+

+

-closed subsets of X � F (X) are

precisely the topological convergence relations, i.e., the relations C � X �F (X) for which

there exists a topology T on X such that a �lter F T -converges to a point x iff hx; F i 2 C .

This polarity makes precise the interplay between topologies and �lter convergence.

The relation R of Example 20 can be viewed as a restriction of the current relation R if

points are identi�ed with principal ultra�lters. By restricting from arbitrary �lters to principal

�lters (which can be identi�ed with subsets of X ), one obtains a polarity whose closed subsets

of X � P (X) are precisely the topological adherence relations.

Example 22: (cf. [46], [2]) Let R be the relation on the class of all topological spaces de�ned

by hX; Y i 2 R iff all continuous functions from X to Y are constant. Although this is a

relation on a proper class we still obtain a polarity on the collection of all subclasses of the

class of topological spaces. Given a class E of topological spaces, the spaces in R

+

(E ) are

called E -connected, and the spaces in R

+

R

+

(E ) are called E -disconnected. E.g., if 2

denotes a two-element discrete space, then \f2g-connected" means \connected" in the usual

sense, and \f2g-disconnected" means \totally disconnected".

Example 23: Let A be the class of all continuous functions, and let B be the class of all

topological spaces. De�ne relations R and S between continuous functions and topological

spaces as follows: hX

f

�! Y; Zi 2 R (resp. hX

f

�! Y; Zi 2 S ) iff for every continuous function

X

h

�! Z there is at least one (resp. at most one) continuous function Y

g

�! Z with h = g
�
f .

Then R

+

maps a class M of continuous functions to the class of so-called M -injective

spaces. The class S

+

(M ) consists of the M -separated spaces in the sense of Pumpl�un

and R�ohrl [47]. For example, if M is the class of all dense embeddings, then S

+

(M ) is

precisely the class of Hausdor� spaces. On the other hand, S

+

(B) is the class of all surjective

continuous functions. A dual construction for R yields M -projective spaces. All these

relations have analogs that yield useful polarities in general categories. A generalization of the

orthogonality relation R \ S is used extensively in [11].

Example 24: (cf. Example 15) If A = hA; �i is a partial semigroup, then for T � A

the polarity P (A)

h�nT;T=�i

��������

�

P (A)

op

is generated by the relation f ha; bi 2 A � A j

a � b is de�ned and a � b 2 T g .

Example 25: (cf. [56]) A \restructured" view of polarities with applications in extra-mathe-

matical disciplines is pursued in the modern theory of Formal Concept Analysis. Here one

studies a set A of \objects", a set B of \attributes", and a relation R � A � B . The

triple hA;B;Ri is interpreted as a context. Pairs of the form hU; V i 2 P (A) � P (B) with

R

+

(U) = V and R

+

(V ) = U are called concepts; U is the extent and V is the intent of

the concept hU; V i . The concepts form a complete lattice, isomorphic to the closure system of
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all extents (= R

+

+

-closed subsets of A ordered by inclusion), and dually isomorphic to the

closure system of all intents (= R

+

+

-closed subsets of B ordered by inclusion). A thorough

investigation of the concept lattice reveals implications and dependencies between the various

concepts involved.

If R is a pre-order � on a set P , then R

+

(U) is the set of all upper (!) bounds and

R

+

(U) is the set of all lower (!) bounds for U � P . The concept lattice of the context

hP; P;�i is known as the Dedekind-MacNeille completion or the completion by cuts

for the pre-ordered set P = hP;�i (cf. [40] and [8]). It is well-known that a complete lattice

L is a normal completion of P (that is, P admits a join- and meet-dense embedding into

L ) iff L is isomorphic to the completion by cuts of P . Two further examples of such normal

completions for P are the systems of all R

+

+

-closed sets (lower cuts), ordered by inclusion,

and the system of all R

+

+

-closed sets (upper cuts), ordered by reverse inclusion.

Example 26: As before, let P = hP;�i be a pre-ordered set, but let R be the complementary

dual relation 6� . It is easy to see that R

+

(U) is the complement in P of the upper set "U

generated by U , while R

+

(V ) is the complement of the lower set #V (see Example 9).

Thus the isomorphism between the Alexandro� topology of all upper (= R

+

+

-open) sets and

that of all lower (= R

+

+

-closed) sets via complementation is induced by the relation R . The

associated closure operations preserve arbitrary unions.

If R is the inequality relation 6= on a set A , then R

+

+

is the isomorphism from P (A) to

P (A)

op

given by complementation. We denote its inverse by P (A)

op
�

A

���

�

P (A) .

Example 27: Consider a meet-semilattice P = hP;�i with least element ? , and the relation

R = f ha; bi 2 P � P j a ^ b =?g . For any U � P the set U

?

= R

+

(U) = R

+

(U) is a lower

set. If P is pseudocomplemented (cf. Example 18), then U

?

is even a lower cut, namely the

set of lower bounds for all pseudocomplements of members of U . Any two lower sets U and

V satisfy U \ V = f?g iff U � V

?

, which explicitly describes the pseudocomplementation

in the frame of lower sets. Hence the closure system S (P) of all R

+

+

-closed (= R

+

+

-open)

sets is the skeleton of this frame (see again Example 18), and as such it is Boolean. It is now

easy to see that S (P) is actually a normal completion of the skeleton P

?

. In particular this

shows that Boolean lattices have Boolean completions by cuts.

Example 28: Again, let P = hP;�i be a meet-semilattice with least element ? , but this time

consider R = f ha; bi 2 P �P j a^b 6=?g . Here the R

+

+

-closed (= R

+

+

-open) sets are upper

sets. If P is even a Boolean lattice, then every upper set is R

+

+

-closed; the R

+

+

-closure of

U � P is just the upper set "U . In this speci�c situation by Proposition 3(5) the Alexandro�

topology A

�

is actually self-dual, as well as dual to A

�

.

In particular, this applies to any power set lattice P (X). Here R

+

= R

+

is the section

operator considered by Choquet [12] and others (see, e.g., [51] and [30]) in connection with

convergence-related questions: R

+

(U ) = U

]

= fV � X j 8

U2U

U \ V 6= ; g . Moreover,

U

]]

is the stack generated by U , i.e., the collection of all sets V with U � V � X for some

U 2 U . The well-known isomorphism between the lattice of �lters on X and the lattice of

grills on X is obtained by a suitable restriction and corestriction of R

+

. The ultra�lters are

16



precisely the �xed points of this dual isomorphism. This puts the interplay between limits and

cluster points into a nice symmetric framework: a point x is a cluster point of a stack U (in

some topological space or convergence space) iff x is a limit of the stack U

]

.

The section operator has also been used to give a symmetric formulation of the notion

of complete distributivity: a complete lattice hX;�i is completely distributive iff for every

collection U of subsets of X the following identity holds:

^

n

_

U j U 2 U

o

=

_

n

^

V j V 2 U

]

o

Since replacing U with the stack U

]]

does not change either side of the equation, we imme-

diately see that complete distributivity is a self-dual property (see also Example 12).

AXIALITIES

We now consider the covariant case of Galois connections between power sets both ordered

by inclusion; we call such Galois connections axialities. The strong similarity between the

following result and Proposition 7 despite the di�erent orders on the second power set is quite

surprising.

Proposition 8: (cf. [27]) (1) Any relation R � A �B induces a Galois connection

P (A)

R

9

8

����

�

P (B) . The components of R

9

8

= hR

9

; R

8

i are de�ned by

R

9

(U) := f b 2 B j 9

a2A

ha; bi 2 R and a 2 U g for U � A

R

8

(V ) := f a 2 A j 8

b2B

ha; bi 2 R implies b 2 V g for V � B

(2) If for an axiality P (A)

�

��

�

P (B) the relation j�j � A�B is de�ned by ha; bi 2 j�j iff

b 2 �

�

(fag), then � = j�j

9

8

.

(3) Every relation R � A � B satis�es R = jR

9

8

j . Hence every axiality � from P (A) to

P (B) comes from a unique relation R � A� B , namely R = j�j , and vice versa.

(4) R

9

8

= hR

9

; R

8

i := (R

op

)

9

8

is an axiality from P (B) to P (A).

As in the contravariant case, any Galois connection between a closure system on A and an

interior system on B is induced by a unique axiality, hence by a unique relation R � A � B

(cf. Propositions 6 and 8).

The following theorem provides a common generalization of several results encountered

so far. It is based on the phenomenon, �rst recognized by Lawvere [39], that quanti�cation

is adjoint to substitution. Speci�cally, it shows that each relation between two sets not only

induces a whole family of polarities, but also two families of axialities, from which the polarities

arise as a derived concept. By substituting singletons for A , C , and B in parts (1), (2) and (3)

of the theorem, respectively, one obtains (after suitably renaming the sets) Proposition 8(1),

(4) and 7(1). Specializing Theorem 1 to the case A = B , we arrive at Example 17.

Recall that the composite of relations R � A � B and S � B � C is a subset of A � C ,

namely R
 S = fha; ci 2 A � C j 9

b2B

ha; bi 2 R and hb; ci 2 S g .
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Theorem 1: (The bi-category of sets, relations and inclusions is bi-closed w.r.t. 
)

(1) If S � B�C , then for each set A the function P (A� B)

�
S

����! P (A � C) is coadjoint

and its (uniquely determined) adjoint P (A� C)

�/S

���! P (A�B) maps T � A� C to

T / S := f ha; bi 2 A� B j 8

c2C

ha; ci 2 T ( hb; ci 2 S g .

(2) If R � A�B , then for each set C the function P (B � C)

R
�

����! P (A� C) is coadjoint

and its (uniquely determined) adjoint P (A� C)

R.�

���! P (B � C) maps T � A�C to

R . T := f hb; ci 2 B � C j 8

a2A

ha; bi 2 R ) ha; ci 2 T g .

(3) If T � A � C , then for each set B the functions P (A� B)

�.T

���! P

op

(B � C) and

P (B � C)

op

T/�

���! P (A�B) constitute a Galois connection h� . T; T /�i .

To obtain a complete characterization via relations of all possible Galois connections be-

tween the power sets of A and B , respectively, we use the complementation-induced Galois

connections �

S

and �

B

of Example 26 to de�ne Galois connections R

�

�

and R

8

9

by

P (A)

op

R

�

�

����

�

P (B)

�

A

�

�

�

�

�

�

�

�

�

B

P (A) ����

�

R

+

+

P (B)

op

and

P (A)

op

R

8

9

����

�

P (B)

op

�

A

�

�

�

�

�

�

�

�

�

�1

B

P (A) ����

�

R

9

8

P (B)

Notice that (R

8

9

)

op

= (R

op

)

9

8

. Writing R

c

for the complement (A�B) �R , we also have

(R

c

)

�

�

= �

B

�
R

8

9

= R

9

8

�
�

A

and (R

c

)

+

+

= �

�1

B

�
R

9

8

= R

8

9

�
�

�1

A

(5)

as well as

T / S = (T

c


 S

op

)

c

and R . T = (R

op


 T

c

)

c

(6)

Proposition 9: A relation R � A�B satis�es

(1) R

9

(U) � R

8

(U) (resp. R

8

(U) � R

9

(U)) for every U � A iff each a 2 A is R-related

to at most one (resp. at least one) b 2 B ; in this case we call R right unique (resp.

left total);

(2) R

9

(V ) � R

8

(V ) (resp. R

8

(V ) � R

9

(V )) for every V � B iff each b 2 B is R-related

to at most one (resp. at least one) a 2 A ; in this case we call R left unique (resp.

right total).

Example 29: When a partial function A

h

�* B is identi�ed with its graph, i.e., h � A � B ,

then the axiality h

9

8

is precisely the Galois connection of Example 2, and the axiality h

9

8

is

precisely the Galois connection of Example 3. From Example 2 it can be seen that h

9

� h

8

,

i.e., h

9

(V ) � h

8

(V ) for all V � B . This property in fact characterizes partial functions: by

Proposition 9 R � A � B is the graph of a partial function A �* B iff R

9

� R

8

. Moreover,

R is the graph of a function from A to B iff R

9

= R

8

.
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Proposition 10: Using the backwards composition of relations S
�
R = R
 S (as in the case

of functions), one has (S
�
R)

9

8

= S

9

8

�
R

9

8

. Hence the axialities on P (A) form a quantale

that is isomorphic to the quantale hP (A�A) ; �i of all relations on A (cf. Example 17).

Example 30: (cf. Example 15) If A = hA; �i is a partial semigroup and R; S � A , then both

of hR
�; Rn�i and h�
 S;�=Si are axialities from P (A) to itself. The �rst is induced by

the relation R

0

� A � A given by ha; bi 2 R

0

iff b = r � a for some r 2 R , and the second is

induced by the relation S

0

� A�A given by ha; bi 2 S

0

iff b = a � s for some s 2 S .

Example 31: Suppose R is an idempotent relation on A = B , i.e., R = R 
 R . This is

tantamount to saying that R is transitive and has the interpolation property: for ha; ci 2 R

there exists some b with ha; bi 2 R and hb; ci 2 R . Then, by Propositions 10 and 5, the

axiality R

9

8

has the property that both parts are idempotent functions. Hence, restriction

and corestriction to the Alexandro� topology A

R

= fU � A j R

9

(U) � U g = fU � A j U �

R

8

(U) g (cf. Example 20) yield a Galois connection A

R

�

��

�

A

R

with the property that �

�

is an

interior operation and �

�

is a closure operation. Since A

R

is closed under arbitrary unions and

intersections, it is a completely distributive lattice as are the images under �

�

and �

�

. Thus for

any idempotent relation R , the R

9

8

-open (= �-open) sets and the R

9

8

-closed (= �-closed)

sets form isomorphic completely distributive lattices (cf. [48] and [6]). Passing to the opposite

relation, we obtain two further completely distributive lattices that are dually isomorphic to

the �rst ones, via complementation: the R

9

8

-open (closed) sets are the complements of the

R

9

8

-closed (open) sets.

These arguments apply, e.g., to the so-called way-below relation � of a continuous

poset. This relation is known to be idempotent, and the �

9

8

-open sets are precisely the

Scott-open sets (cf. [25], [19], and Example 12). Hence the Scott topology of a continuous

poset is not only completely distributive but also dually isomorphic to the lattice of way-below

sets, i.e., �

9

8

-open sets. See also [33].

We conclude our primer on Galois connections with the following observation. Given two

relations R � A � B and S � B � C , there are at least three natural ways to produce a

polarity from P (A) to P (C) by using the polarities and axialities induced by R and S , as

indicated by the following diagram:

P (B)

R

9

8

�

�

�

@

@

�

S

+

+

P (A)

(R
S)

+

+

�����������

�

P (C)

op

R

+

+

@

@

�

�

�

�

S

8

9

P (B)

op

Explicitly, S

+

+

�
R

9

8

comes from the relation (R 
 S

c

)

c

= R

op

. S , and S

8

9

�
R

+

+

from

the relation (R

c


 S)

c

= R / S

op

(use Proposition 10 and formula (6)). In general, all three

polarities may be di�erent, being induced by di�erent relations.
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